Correlations and Covariances
BIFIE.correl.RdComputes correlations and covariances
Arguments
- BIFIEobj
Object of class
BIFIEdata- vars
Vector of variables for which statistics should be computed
- group
Optional grouping variable(s)
- group_values
Optional vector of grouping values. This can be omitted and grouping values will be determined automatically.
- se
Optional logical indicating whether statistical inference based on replication should be employed.
- object
Object of class
BIFIE.correl- digits
Number of digits for rounding output
- type
If
type="cov", then covariances instead of correlations are extracted.- ...
Further arguments to be passed
Value
A list with following entries
- stat.cor
Data frame with correlation statistics
- stat.cov
Data frame with covariance statistics
- cor_matrix
List of estimated correlation matrices
- cov_matrix
List of estimated covariance matrices
- output
Extensive output with all replicated statistics
- ...
More values
Examples
#############################################################################
# EXAMPLE 1: Imputed TIMSS dataset
#############################################################################
data(data.timss1)
data(data.timssrep)
# create BIFIE.dat object
bdat <- BIFIEsurvey::BIFIE.data( data.list=data.timss1, wgt=data.timss1[[1]]$TOTWGT,
wgtrep=data.timssrep[, -1 ] )
#> +++ Generate BIFIE.data object
#> |*****|
#> |-----|
# Correlations splitted by gender
res1 <- BIFIEsurvey::BIFIE.correl( bdat, vars=c("lang", "books", "migrant" ),
group="female", group_values=0:1 )
#> |*****|
#> |-----|
summary(res1)
#> ------------------------------------------------------------
#> BIFIEsurvey 3.8.0 ()
#>
#> Function 'BIFIE.correl'
#>
#> Call:
#> BIFIEsurvey::BIFIE.correl(BIFIEobj = bdat, vars = c("lang", "books",
#> "migrant"), group = "female", group_values = 0:1)
#>
#> Date of Analysis: 2026-01-11 08:35:14.607365
#> Time difference of 0.1867967 secs
#> Computation time: 0.1867967
#>
#> Multiply imputed dataset
#>
#> Number of persons = 4668
#> Number of imputed datasets = 5
#> Number of Jackknife zones per dataset = 75
#> Fay factor = 1
#>
#> Statistical Inference for Correlations
#> var1 var2 groupvar groupval Ncases Nweight cor cor_SE t df
#> 3 lang books female 0 2388.6 40129.77 -0.1649 0.0305 -5.41 Inf
#> 4 lang books female 1 2279.4 38203.22 -0.1877 0.0370 -5.07 Inf
#> 5 lang migrant female 0 2388.6 40129.77 0.5873 0.0286 20.55 Inf
#> 6 lang migrant female 1 2279.4 38203.22 0.5953 0.0279 21.32 Inf
#> 9 books migrant female 0 2388.6 40129.77 -0.2619 0.0209 -12.53 472.26
#> 10 books migrant female 1 2279.4 38203.22 -0.2473 0.0326 -7.59 Inf
#> p cor_fmi cor_VarMI cor_VarRep
#> 3 0 0.0212 0 0.0009
#> 4 0 0.0229 0 0.0013
#> 5 0 0.0583 0 0.0008
#> 6 0 0.0151 0 0.0008
#> 9 0 0.0920 0 0.0004
#> 10 0 0.0142 0 0.0010
#>
#> Correlation Matrices
#>
#> $female0
#> lang books migrant
#> lang 1.0000 -0.1649 0.5873
#> books -0.1649 1.0000 -0.2619
#> migrant 0.5873 -0.2619 1.0000
#>
#> $female1
#> lang books migrant
#> lang 1.0000 -0.1877 0.5953
#> books -0.1877 1.0000 -0.2473
#> migrant 0.5953 -0.2473 1.0000
#>
# Correlations splitted by gender: no statistical inference (se=FALSE)
res1a <- BIFIEsurvey::BIFIE.correl( bdat, vars=c("lang", "books", "migrant" ),
group="female", group_values=0:1, se=FALSE)
#> |*****|
#> |-----|
summary(res1a)
#> ------------------------------------------------------------
#> BIFIEsurvey 3.8.0 ()
#>
#> Function 'BIFIE.correl'
#>
#> Call:
#> BIFIEsurvey::BIFIE.correl(BIFIEobj = bdat, vars = c("lang", "books",
#> "migrant"), group = "female", group_values = 0:1, se = FALSE)
#>
#> Date of Analysis: 2026-01-11 08:35:14.798948
#> Time difference of 0.008200169 secs
#> Computation time: 0.008200169
#>
#> Multiply imputed dataset
#>
#> Number of persons = 4668
#> Number of imputed datasets = 5
#> Number of Jackknife zones per dataset = 0
#> Fay factor = 1
#>
#> Statistical Inference for Correlations
#> var1 var2 groupvar groupval Ncases Nweight cor
#> 3 lang books female 0 2388.6 40129.77 -0.1649
#> 4 lang books female 1 2279.4 38203.22 -0.1877
#> 5 lang migrant female 0 2388.6 40129.77 0.5873
#> 6 lang migrant female 1 2279.4 38203.22 0.5953
#> 9 books migrant female 0 2388.6 40129.77 -0.2619
#> 10 books migrant female 1 2279.4 38203.22 -0.2473
#>
#> Correlation Matrices
#>
#> $female0
#> lang books migrant
#> lang 1.0000 -0.1649 0.5873
#> books -0.1649 1.0000 -0.2619
#> migrant 0.5873 -0.2619 1.0000
#>
#> $female1
#> lang books migrant
#> lang 1.0000 -0.1877 0.5953
#> books -0.1877 1.0000 -0.2473
#> migrant 0.5953 -0.2473 1.0000
#>