Skip to contents

Creates cross tabulations and computes some effect sizes.

Usage

BIFIE.crosstab( BIFIEobj, vars1, vars2, vars_values1=NULL, vars_values2=NULL,
     group=NULL, group_values=NULL, se=TRUE )

# S3 method for class 'BIFIE.crosstab'
summary(object,digits=3,...)

# S3 method for class 'BIFIE.crosstab'
coef(object,...)

# S3 method for class 'BIFIE.crosstab'
vcov(object,...)

Arguments

BIFIEobj

Object of class BIFIEdata

vars1

Row variable

vars2

Column variable

vars_values1

Optional vector of values of variable vars1

vars_values2

Optional vector of values of variable vars2

group

Optional grouping variable(s)

group_values

Optional vector of grouping values. This can be omitted and grouping values will be determined automatically.

se

Optional logical indicating whether statistical inference based on replication should be employed.

object

Object of class BIFIE.univar

digits

Number of digits for rounding output

...

Further arguments to be passed

Value

A list with following entries

stat.probs

Statistics for joint and conditional probabilities

stat.marg

Statistics for marginal probabilities

stat.es

Statistics for effect sizes \(w\) (based on \(\chi^2\)), Cramers \(V\), Goodman's gamma, the PRE lambda measure and Kruskals tau.

output

Extensive output with all replicated statistics

...

More values

Examples

#############################################################################
# EXAMPLE 1: Imputed TIMSS dataset
#############################################################################

data(data.timss1)
data(data.timssrep)

# create BIFIE.dat object
bifieobj <- BIFIEsurvey::BIFIE.data( data.list=data.timss1, wgt=data.timss1[[1]]$TOTWGT,
           wgtrep=data.timssrep[, -1 ] )
#> +++ Generate BIFIE.data object
#> |*****|
#> |-----|

#--- Model 1: cross tabulation
res1 <- BIFIEsurvey::BIFIE.crosstab( bifieobj, vars1="migrant",
               vars2="books", group="female" )
#> |*****|
#> |-----|
summary(res1)
#> ------------------------------------------------------------
#> BIFIEsurvey 3.8.0 () 
#> 
#> Function 'BIFIE.crosstab'
#> 
#> Call:
#> BIFIEsurvey::BIFIE.crosstab(BIFIEobj = bifieobj, vars1 = "migrant", 
#>     vars2 = "books", group = "female")
#> 
#> Date of Analysis: 2026-01-11 08:35:20.187442 
#> Time difference of 0.03271055 secs
#> Computation time: 0.03271055 
#> 
#> Multiply imputed dataset
#> 
#> Number of persons = 4668 
#> Number of imputed datasets = 5 
#> Number of Jackknife zones per dataset = 75 
#> Fay factor = 1 
#> 
#> Joint and Conditional Probabilities
#>       prob    var1 varval1  var2 varval2  group groupval Ncases   Nweight   est
#> 1    joint migrant       0 books       1 female        0  162.6  2929.601 0.073
#> 2    joint migrant       0 books       2 female        0  434.2  7965.610 0.198
#> 3    joint migrant       0 books       3 female        0  663.4 11627.561 0.290
#> 4    joint migrant       0 books       4 female        0  293.6  4876.792 0.122
#> 5    joint migrant       0 books       5 female        0  303.8  4918.441 0.123
#> 6    joint migrant       1 books       1 female        0  151.4  2328.836 0.058
#> 7    joint migrant       1 books       2 female        0  178.0  2683.693 0.067
#> 8    joint migrant       1 books       3 female        0  136.2  1916.525 0.048
#> 9    joint migrant       1 books       4 female        0   31.8   415.302 0.010
#> 10   joint migrant       1 books       5 female        0   33.6   467.407 0.012
#> 11   joint migrant       0 books       1 female        1   71.2  1270.661 0.033
#> 12   joint migrant       0 books       2 female        1  385.0  6870.760 0.180
#> 13   joint migrant       0 books       3 female        1  715.0 12483.328 0.327
#> 14   joint migrant       0 books       4 female        1  355.2  6051.650 0.158
#> 15   joint migrant       0 books       5 female        1  230.6  3805.948 0.100
#> 16   joint migrant       1 books       1 female        1   98.8  1360.369 0.036
#> 17   joint migrant       1 books       2 female        1  216.0  3082.630 0.081
#> 18   joint migrant       1 books       3 female        1  143.0  2206.482 0.058
#> 19   joint migrant       1 books       4 female        1   28.2   411.067 0.011
#> 20   joint migrant       1 books       5 female        1   36.4   660.327 0.017
#> 21 rowcond migrant       0 books       1 female        0  162.6  2929.601 0.091
#> 22 rowcond migrant       0 books       2 female        0  434.2  7965.610 0.246
#> 23 rowcond migrant       0 books       3 female        0  663.4 11627.561 0.360
#> 24 rowcond migrant       0 books       4 female        0  293.6  4876.792 0.151
#> 25 rowcond migrant       0 books       5 female        0  303.8  4918.441 0.152
#> 26 rowcond migrant       1 books       1 female        0  151.4  2328.836 0.298
#> 27 rowcond migrant       1 books       2 female        0  178.0  2683.693 0.344
#> 28 rowcond migrant       1 books       3 female        0  136.2  1916.525 0.245
#> 29 rowcond migrant       1 books       4 female        0   31.8   415.302 0.053
#> 30 rowcond migrant       1 books       5 female        0   33.6   467.407 0.060
#> 31 rowcond migrant       0 books       1 female        1   71.2  1270.661 0.042
#> 32 rowcond migrant       0 books       2 female        1  385.0  6870.760 0.225
#> 33 rowcond migrant       0 books       3 female        1  715.0 12483.328 0.410
#> 34 rowcond migrant       0 books       4 female        1  355.2  6051.650 0.199
#> 35 rowcond migrant       0 books       5 female        1  230.6  3805.948 0.125
#> 36 rowcond migrant       1 books       1 female        1   98.8  1360.369 0.176
#> 37 rowcond migrant       1 books       2 female        1  216.0  3082.630 0.399
#> 38 rowcond migrant       1 books       3 female        1  143.0  2206.482 0.286
#> 39 rowcond migrant       1 books       4 female        1   28.2   411.067 0.053
#> 40 rowcond migrant       1 books       5 female        1   36.4   660.327 0.086
#> 41 colcond migrant       0 books       1 female        0  162.6  2929.601 0.557
#> 42 colcond migrant       0 books       2 female        0  434.2  7965.610 0.748
#> 43 colcond migrant       0 books       3 female        0  663.4 11627.561 0.858
#> 44 colcond migrant       0 books       4 female        0  293.6  4876.792 0.922
#> 45 colcond migrant       0 books       5 female        0  303.8  4918.441 0.913
#> 46 colcond migrant       1 books       1 female        0  151.4  2328.836 0.443
#> 47 colcond migrant       1 books       2 female        0  178.0  2683.693 0.252
#> 48 colcond migrant       1 books       3 female        0  136.2  1916.525 0.142
#> 49 colcond migrant       1 books       4 female        0   31.8   415.302 0.078
#> 50 colcond migrant       1 books       5 female        0   33.6   467.407 0.087
#> 51 colcond migrant       0 books       1 female        1   71.2  1270.661 0.483
#> 52 colcond migrant       0 books       2 female        1  385.0  6870.760 0.690
#> 53 colcond migrant       0 books       3 female        1  715.0 12483.328 0.850
#> 54 colcond migrant       0 books       4 female        1  355.2  6051.650 0.936
#> 55 colcond migrant       0 books       5 female        1  230.6  3805.948 0.852
#> 56 colcond migrant       1 books       1 female        1   98.8  1360.369 0.517
#> 57 colcond migrant       1 books       2 female        1  216.0  3082.630 0.310
#> 58 colcond migrant       1 books       3 female        1  143.0  2206.482 0.150
#> 59 colcond migrant       1 books       4 female        1   28.2   411.067 0.064
#> 60 colcond migrant       1 books       5 female        1   36.4   660.327 0.148
#>       SE   fmi     df VarMI VarRep
#> 1  0.007 0.011    Inf     0  0.000
#> 2  0.011 0.033    Inf     0  0.000
#> 3  0.013 0.018    Inf     0  0.000
#> 4  0.008 0.026    Inf     0  0.000
#> 5  0.011 0.015    Inf     0  0.000
#> 6  0.007 0.034    Inf     0  0.000
#> 7  0.009 0.012    Inf     0  0.000
#> 8  0.005 0.032    Inf     0  0.000
#> 9  0.002 0.034    Inf     0  0.000
#> 10 0.002 0.101 388.46     0  0.000
#> 11 0.007 0.011    Inf     0  0.000
#> 12 0.011 0.035    Inf     0  0.000
#> 13 0.015 0.005    Inf     0  0.000
#> 14 0.011 0.019    Inf     0  0.000
#> 15 0.009 0.031    Inf     0  0.000
#> 16 0.004 0.020    Inf     0  0.000
#> 17 0.009 0.009    Inf     0  0.000
#> 18 0.007 0.026    Inf     0  0.000
#> 19 0.003 0.023    Inf     0  0.000
#> 20 0.003 0.018    Inf     0  0.000
#> 21 0.009 0.013    Inf     0  0.000
#> 22 0.013 0.032    Inf     0  0.000
#> 23 0.015 0.025    Inf     0  0.000
#> 24 0.009 0.027    Inf     0  0.000
#> 25 0.012 0.014    Inf     0  0.000
#> 26 0.024 0.102 382.83     0  0.001
#> 27 0.031 0.013    Inf     0  0.001
#> 28 0.022 0.038    Inf     0  0.000
#> 29 0.011 0.024    Inf     0  0.000
#> 30 0.013 0.076 699.03     0  0.000
#> 31 0.009 0.010    Inf     0  0.000
#> 32 0.014 0.025    Inf     0  0.000
#> 33 0.016 0.014    Inf     0  0.000
#> 34 0.013 0.028    Inf     0  0.000
#> 35 0.011 0.028    Inf     0  0.000
#> 36 0.017 0.016    Inf     0  0.000
#> 37 0.030 0.003    Inf     0  0.001
#> 38 0.026 0.038    Inf     0  0.001
#> 39 0.013 0.022    Inf     0  0.000
#> 40 0.018 0.020    Inf     0  0.000
#> 41 0.034 0.047    Inf     0  0.001
#> 42 0.028 0.018    Inf     0  0.001
#> 43 0.014 0.039    Inf     0  0.000
#> 44 0.015 0.043    Inf     0  0.000
#> 45 0.017 0.117 290.86     0  0.000
#> 46 0.034 0.047    Inf     0  0.001
#> 47 0.028 0.018    Inf     0  0.001
#> 48 0.014 0.039    Inf     0  0.000
#> 49 0.015 0.043    Inf     0  0.000
#> 50 0.017 0.117 290.86     0  0.000
#> 51 0.065 0.022    Inf     0  0.004
#> 52 0.025 0.030    Inf     0  0.001
#> 53 0.018 0.020    Inf     0  0.000
#> 54 0.015 0.013    Inf     0  0.000
#> 55 0.027 0.010    Inf     0  0.001
#> 56 0.065 0.022    Inf     0  0.004
#> 57 0.025 0.030    Inf     0  0.001
#> 58 0.018 0.020    Inf     0  0.000
#> 59 0.015 0.013    Inf     0  0.000
#> 60 0.027 0.010    Inf     0  0.001
#> 
#> Marginal Probabilities
#>       prob     var varval  group groupval   est    SE   fmi  df VarMI VarRep
#> 1  rowmarg migrant      0 female        0 0.805 0.014 0.006 Inf     0      0
#> 2  rowmarg migrant      1 female        0 0.195 0.014 0.006 Inf     0      0
#> 3  rowmarg migrant      0 female        1 0.798 0.014 0.015 Inf     0      0
#> 4  rowmarg migrant      1 female        1 0.202 0.014 0.015 Inf     0      0
#> 5  colmarg   books      1 female        0 0.131 0.011 0.007 Inf     0      0
#> 6  colmarg   books      2 female        0 0.265 0.013 0.020 Inf     0      0
#> 7  colmarg   books      3 female        0 0.338 0.013 0.010 Inf     0      0
#> 8  colmarg   books      4 female        0 0.132 0.008 0.018 Inf     0      0
#> 9  colmarg   books      5 female        0 0.134 0.011 0.010 Inf     0      0
#> 10 colmarg   books      1 female        1 0.069 0.008 0.002 Inf     0      0
#> 11 colmarg   books      2 female        1 0.261 0.015 0.011 Inf     0      0
#> 12 colmarg   books      3 female        1 0.385 0.013 0.009 Inf     0      0
#> 13 colmarg   books      4 female        1 0.169 0.011 0.027 Inf     0      0
#> 14 colmarg   books      5 female        1 0.117 0.009 0.039 Inf     0      0
#> 
#> Effect Sizes
#>        parm  group groupval    est    SE   fmi     df VarMI VarRep
#> 1         w female        0  0.291 0.022 0.128 244.47     0  0.000
#> 2         w female        1  0.300 0.036 0.024    Inf     0  0.001
#> 3         V female        0  0.291 0.022 0.128 244.47     0  0.000
#> 4         V female        1  0.300 0.036 0.024    Inf     0  0.001
#> 5     gamma female        0 -0.485 0.033 0.115 301.63     0  0.001
#> 6     gamma female        1 -0.467 0.054 0.009    Inf     0  0.003
#> 7    lambda female        0  0.022 0.011 0.009    Inf     0  0.000
#> 8  lambda_X female        0  0.000 0.000 0.000    Inf     0  0.000
#> 9  lambda_Y female        0  0.029 0.014 0.009    Inf     0  0.000
#> 10   lambda female        1  0.031 0.020 0.024    Inf     0  0.000
#> 11 lambda_X female        1  0.012 0.041 0.025    Inf     0  0.002
#> 12 lambda_Y female        1  0.037 0.017 0.015    Inf     0  0.000
#> 13      tau female        0  0.037 0.006 0.095 439.20     0  0.000
#> 14    tau_X female        0  0.085 0.013 0.128 243.88     0  0.000
#> 15    tau_Y female        0  0.017 0.003 0.088 515.56     0  0.000
#> 16      tau female        1  0.040 0.010 0.027    Inf     0  0.000
#> 17    tau_X female        1  0.090 0.022 0.023    Inf     0  0.000
#> 18    tau_Y female        1  0.019 0.005 0.027    Inf     0  0.000