Skip to contents

Computes an empirical distribution function (and quantiles). If only some quantiles should be calculated, then an appropriate vector of breaks (which are quantiles) must be specified. Statistical inference is not conducted for this method.

Usage

BIFIE.ecdf( BIFIEobj, vars, breaks=NULL, quanttype=1, group=NULL, group_values=NULL )

# S3 method for class 'BIFIE.ecdf'
summary(object,digits=4,...)

Arguments

BIFIEobj

Object of class BIFIEdata

vars

Vector of variables for which statistics should be computed.

breaks

Optional vector of breaks. Otherwise, it will be automatically defined.

quanttype

Type of calculation for quantiles. In case of quanttype=1, a linear interpolation is used (which is type='i/n' in Hmisc::wtd.quantile), while for quanttype=2 no interpolation is used.

group

Optional grouping variable

group_values

Optional vector of grouping values. This can be omitted and grouping values will be determined automatically.

object

Object of class BIFIE.ecdf

digits

Number of digits for rounding output

...

Further arguments to be passed

Value

A list with following entries

ecdf

Data frame with probabilities and the empirical distribution function (See Examples).

stat

Data frame with empirical distribution function stacked with respect to variables, groups and group values

output

More extensive output

...

More values

See also

Hmisc::wtd.ecdf, Hmisc::wtd.quantile

Examples

#############################################################################
# EXAMPLE 1: Imputed TIMSS dataset
#############################################################################

data(data.timss1)
data(data.timssrep)

# create BIFIE.dat object
bifieobj <- BIFIEsurvey::BIFIE.data( data.list=data.timss1, wgt=data.timss1[[1]]$TOTWGT,
           wgtrep=data.timssrep[, -1 ] )
#> +++ Generate BIFIE.data object
#> |*****|
#> |-----|

# ecdf
vars <- c( "ASMMAT", "books")
group <- "female" ; group_values <- 0:1
# quantile type 1
res1 <- BIFIEsurvey::BIFIE.ecdf( bifieobj,  vars=vars, group=group )
#> |*****|
summary(res1)
#> ------------------------------------------------------------
#> BIFIEsurvey 3.8.0 () 
#> 
#> Function 'BIFIE.ecdf'
#> 
#> Call:
#> BIFIEsurvey::BIFIE.ecdf(BIFIEobj = bifieobj, vars = vars, group = group)
#> 
#> Date of Analysis: 2026-01-11 08:35:25.359839 
#> Time difference of 0.01169848 secs
#> Computation time: 0.01169848 
#> 
#> Multiply imputed dataset
#> 
#> Number of persons = 4668 
#> Number of imputed datasets = 5 
#> Number of Jackknife zones per dataset = 0 
#> Fay factor = 1 
#> 
#> Empirical Distribution Function 
#>     yval ASMMAT_female0 ASMMAT_female1 books_female0 books_female1
#> 1   0.00       289.4060       289.2616        1.0000        1.0000
#> 2   0.01       360.4102       350.5463        1.0000        1.0000
#> 3   0.02       378.2956       370.2925        1.0000        1.0000
#> 4   0.03       390.7284       382.2644        1.0000        1.0000
#> 5   0.04       398.2713       391.3413        1.0000        1.0000
#> 6   0.05       404.7193       399.0253        1.0000        1.0000
#> 7   0.06       410.9382       404.2058        1.0000        1.0000
#> 8   0.07       416.3854       409.1407        1.0000        2.0000
#> 9   0.08       420.9947       413.9343        1.0000        2.0000
#> 10  0.09       425.1791       418.1969        1.0000        2.0000
#> 11  0.10       429.8868       422.6586        1.0000        2.0000
#> 12  0.11       433.8429       425.8044        1.0000        2.0000
#> 13  0.12       437.6019       428.9276        1.0000        2.0000
#> 14  0.13       440.4902       432.0660        1.0855        2.0000
#> 15  0.14       443.2934       434.9671        2.0000        2.0000
#> 16  0.15       446.2611       437.8459        2.0000        2.0000
#> 17  0.16       449.0259       441.0204        2.0000        2.0000
#> 18  0.17       452.1626       443.5597        2.0000        2.0000
#> 19  0.18       454.5535       446.1485        2.0000        2.0000
#> 20  0.19       457.0869       448.4828        2.0000        2.0000
#> 21  0.20       458.9986       450.8571        2.0000        2.0000
#> 22  0.21       460.9323       453.0013        2.0000        2.0000
#> 23  0.22       462.7966       455.4279        2.0000        2.0000
#> 24  0.23       464.8803       458.1117        2.0000        2.0000
#> 25  0.24       466.9136       460.2872        2.0000        2.0000
#> 26  0.25       469.2726       462.6059        2.0000        2.0000
#> 27  0.26       471.2657       464.5962        2.0000        2.0000
#> 28  0.27       473.5467       466.6757        2.0000        2.0000
#> 29  0.28       475.4000       468.6851        2.0000        2.0000
#> 30  0.29       477.8102       470.4226        2.0000        2.0000
#> 31  0.30       480.0956       472.2576        2.0000        2.0000
#> 32  0.31       482.2891       474.2782        2.0000        2.0000
#> 33  0.32       484.0860       475.9431        2.0000        2.0000
#> 34  0.33       485.9087       477.6245        2.0000        2.4447
#> 35  0.34       487.6431       479.6084        2.0000        3.0000
#> 36  0.35       489.5604       481.2538        2.0000        3.0000
#> 37  0.36       491.2799       483.2301        2.0000        3.0000
#> 38  0.37       493.2986       484.8385        2.0000        3.0000
#> 39  0.38       495.0179       486.7814        2.0000        3.0000
#> 40  0.39       496.6917       488.4322        2.0000        3.0000
#> 41  0.40       498.2431       490.2857        3.0000        3.0000
#> 42  0.41       500.2859       492.0067        3.0000        3.0000
#> 43  0.42       501.9409       493.5864        3.0000        3.0000
#> 44  0.43       503.5877       495.2050        3.0000        3.0000
#> 45  0.44       505.3102       497.0009        3.0000        3.0000
#> 46  0.45       507.0328       498.5194        3.0000        3.0000
#> 47  0.46       508.6513       499.8466        3.0000        3.0000
#> 48  0.47       510.1753       501.5958        3.0000        3.0000
#> 49  0.48       511.8156       503.2402        3.0000        3.0000
#> 50  0.49       513.4574       504.9194        3.0000        3.0000
#> 51  0.50       514.8680       506.4329        3.0000        3.0000
#> 52  0.51       516.4589       507.9330        3.0000        3.0000
#> 53  0.52       518.0709       509.7049        3.0000        3.0000
#> 54  0.53       519.4852       511.5210        3.0000        3.0000
#> 55  0.54       520.8204       512.9131        3.0000        3.0000
#> 56  0.55       522.5602       514.5176        3.0000        3.0000
#> 57  0.56       524.3329       516.1179        3.0000        3.0000
#> 58  0.57       525.9907       517.9863        3.0000        3.0000
#> 59  0.58       527.8937       519.5515        3.0000        3.0000
#> 60  0.59       529.2754       521.1383        3.0000        3.0000
#> 61  0.60       530.7957       522.9874        3.0000        3.0000
#> 62  0.61       532.3495       524.4240        3.0000        3.0000
#> 63  0.62       534.0085       526.0524        3.0000        3.0000
#> 64  0.63       535.8988       527.7227        3.0000        3.0000
#> 65  0.64       537.9137       529.3551        3.0000        3.0000
#> 66  0.65       539.5138       531.0225        3.0000        3.0000
#> 67  0.66       541.2964       532.4859        3.0000        3.0000
#> 68  0.67       542.9439       534.1731        3.0000        3.0000
#> 69  0.68       544.7335       535.5444        3.0000        3.0000
#> 70  0.69       546.2788       537.1540        3.0000        3.0000
#> 71  0.70       548.0536       538.7727        3.0000        3.0000
#> 72  0.71       549.7821       540.3485        3.0000        3.0000
#> 73  0.72       551.8408       541.8885        3.0000        4.0000
#> 74  0.73       553.7181       543.8178        3.0000        4.0000
#> 75  0.74       555.4481       545.5449        4.0000        4.0000
#> 76  0.75       557.4563       547.2582        4.0000        4.0000
#> 77  0.76       559.2689       549.2598        4.0000        4.0000
#> 78  0.77       561.3302       550.8590        4.0000        4.0000
#> 79  0.78       563.8103       552.8609        4.0000        4.0000
#> 80  0.79       566.0606       554.5632        4.0000        4.0000
#> 81  0.80       567.8897       556.6981        4.0000        4.0000
#> 82  0.81       569.7978       559.0376        4.0000        4.0000
#> 83  0.82       571.6767       560.6622        4.0000        4.0000
#> 84  0.83       574.1766       562.9315        4.0000        4.0000
#> 85  0.84       576.3203       565.0438        4.0000        4.0000
#> 86  0.85       578.6383       567.4220        4.0000        4.0000
#> 87  0.86       580.9051       569.8376        4.0000        4.0000
#> 88  0.87       583.1823       572.2332        5.0000        4.0000
#> 89  0.88       585.9448       574.8882        5.0000        4.0000
#> 90  0.89       589.1086       578.0211        5.0000        5.0000
#> 91  0.90       591.7039       580.5636        5.0000        5.0000
#> 92  0.91       595.0740       583.8702        5.0000        5.0000
#> 93  0.92       598.3910       586.9706        5.0000        5.0000
#> 94  0.93       602.9135       589.8593        5.0000        5.0000
#> 95  0.94       607.5578       593.8227        5.0000        5.0000
#> 96  0.95       613.1091       597.9249        5.0000        5.0000
#> 97  0.96       618.9041       603.1582        5.0000        5.0000
#> 98  0.97       627.0231       609.0026        5.0000        5.0000
#> 99  0.98       637.2005       619.0757        5.0000        5.0000
#> 100 0.99       651.9489       629.8061        5.0000        5.0000
#> 101 1.00       720.2110       739.7378        5.0000        5.0000
res2 <- BIFIEsurvey::BIFIE.ecdf( bifieobj,  vars=vars, group=group, quanttype=2)
#> |*****|
# plot distribution function
ecdf1 <- res1$ecdf
plot( ecdf1$ASMMAT_female0, ecdf1$yval, type="l")

plot( res2$ecdf$ASMMAT_female0, ecdf1$yval, type="l", lty=2)

plot( ecdf1$books_female0, ecdf1$yval, type="l", col="blue")