Skip to contents

Computes absolute and relative frequencies.

Usage

BIFIE.freq(BIFIEobj, vars, group=NULL, group_values=NULL, se=TRUE)

# S3 method for class 'BIFIE.freq'
summary(object,digits=3,...)

# S3 method for class 'BIFIE.freq'
coef(object,...)

# S3 method for class 'BIFIE.freq'
vcov(object,...)

Arguments

BIFIEobj

Object of class BIFIEdata

vars

Vector of variables for which statistics should be computed

group

Optional grouping variable(s)

group_values

Optional vector of grouping values. This can be omitted and grouping values will be determined automatically.

se

Optional logical indicating whether statistical inference based on replication should be employed.

object

Object of class BIFIE.freq

digits

Number of digits for rounding output

...

Further arguments to be passed

Value

A list with following entries

stat

Data frame with frequency statistics

output

Extensive output with all replicated statistics

...

More values

Examples

#############################################################################
# EXAMPLE 1: Imputed TIMSS dataset
#############################################################################

data(data.timss1)
data(data.timssrep)

# create BIFIE.dat object
bdat <- BIFIEsurvey::BIFIE.data( data.list=data.timss1, wgt=data.timss1[[1]]$TOTWGT,
           wgtrep=data.timssrep[, -1 ] )
#> +++ Generate BIFIE.data object
#> |*****|
#> |-----|

# Frequencies for three variables
res1 <- BIFIEsurvey::BIFIE.freq( bdat, vars=c("lang", "books", "migrant" )  )
#> |*****|
#> |-----|
summary(res1)
#> ------------------------------------------------------------
#> BIFIEsurvey 3.8.0 () 
#> 
#> Function 'BIFIE.freq'
#> 
#> Call:
#> BIFIEsurvey::BIFIE.freq(BIFIEobj = bdat, vars = c("lang", "books", 
#>     "migrant"))
#> 
#> Date of Analysis: 2026-01-11 08:35:25.971501 
#> Time difference of 0.3153992 secs
#> Computation time: 0.3153992 
#> 
#> Multiply imputed dataset
#> 
#> Number of persons = 4668 
#> Number of imputed datasets = 5 
#> Number of Jackknife zones per dataset = 75 
#> Fay factor = 1 
#> 
#> Relative Frequencies 
#>        var varval Ncases   Nweight  perc perc_SE perc_fmi perc_df perc_VarMI
#> 1     lang      1 3472.2 60121.843 0.768   0.011    0.007     Inf          0
#> 2     lang      2 1036.4 15564.696 0.199   0.010    0.008     Inf          0
#> 3     lang      3  159.4  2646.451 0.034   0.003    0.004     Inf          0
#> 4    books      1  484.0  7889.467 0.101   0.008    0.005     Inf          0
#> 5    books      2 1213.2 20602.693 0.263   0.012    0.009     Inf          0
#> 6    books      3 1657.6 28233.896 0.360   0.010    0.004     Inf          0
#> 7    books      4  708.8 11754.811 0.150   0.008    0.032     Inf          0
#> 8    books      5  604.4  9852.122 0.126   0.008    0.017     Inf          0
#> 9  migrant      0 3614.6 62800.351 0.802   0.013    0.004     Inf          0
#> 10 migrant      1 1053.4 15532.639 0.198   0.013    0.004     Inf          0
#>    perc_VarRep
#> 1            0
#> 2            0
#> 3            0
#> 4            0
#> 5            0
#> 6            0
#> 7            0
#> 8            0
#> 9            0
#> 10           0

# Frequencies splitted by gender
res2 <- BIFIEsurvey::BIFIE.freq( bdat, vars=c("lang", "books", "migrant" ),
              group="female", group_values=0:1 )
#> |*****|
#> |-----|
summary(res2)
#> ------------------------------------------------------------
#> BIFIEsurvey 3.8.0 () 
#> 
#> Function 'BIFIE.freq'
#> 
#> Call:
#> BIFIEsurvey::BIFIE.freq(BIFIEobj = bdat, vars = c("lang", "books", 
#>     "migrant"), group = "female", group_values = 0:1)
#> 
#> Date of Analysis: 2026-01-11 08:35:26.291337 
#> Time difference of 0.06330109 secs
#> Computation time: 0.06330109 
#> 
#> Multiply imputed dataset
#> 
#> Number of persons = 4668 
#> Number of imputed datasets = 5 
#> Number of Jackknife zones per dataset = 75 
#> Fay factor = 1 
#> 
#> Relative Frequencies 
#>        var varval groupvar groupval Ncases   Nweight  perc perc_SE perc_fmi
#> 1     lang      1   female        0 1797.0 31154.878 0.776   0.013    0.008
#> 2     lang      2   female        0  491.6  7335.872 0.183   0.012    0.010
#> 3     lang      3   female        0  100.0  1639.017 0.041   0.005    0.002
#> 4     lang      1   female        1 1675.2 28966.965 0.758   0.013    0.012
#> 5     lang      2   female        1  544.8  8228.824 0.215   0.013    0.014
#> 6     lang      3   female        1   59.4  1007.434 0.026   0.003    0.009
#> 7    books      1   female        0  314.0  5258.437 0.131   0.011    0.007
#> 8    books      2   female        0  612.2 10649.303 0.265   0.013    0.020
#> 9    books      3   female        0  799.6 13544.086 0.338   0.013    0.010
#> 10   books      4   female        0  325.4  5292.094 0.132   0.008    0.018
#> 11   books      5   female        0  337.4  5385.847 0.134   0.011    0.010
#> 12   books      1   female        1  170.0  2631.030 0.069   0.008    0.002
#> 13   books      2   female        1  601.0  9953.390 0.261   0.015    0.011
#> 14   books      3   female        1  858.0 14689.810 0.385   0.013    0.009
#> 15   books      4   female        1  383.4  6462.717 0.169   0.011    0.027
#> 16   books      5   female        1  267.0  4466.275 0.117   0.009    0.039
#> 17 migrant      0   female        0 1857.6 32318.004 0.805   0.014    0.006
#> 18 migrant      1   female        0  531.0  7811.763 0.195   0.014    0.006
#> 19 migrant      0   female        1 1757.0 30482.347 0.798   0.014    0.015
#> 20 migrant      1   female        1  522.4  7720.876 0.202   0.014    0.015
#>    perc_df perc_VarMI perc_VarRep
#> 1      Inf          0           0
#> 2      Inf          0           0
#> 3      Inf          0           0
#> 4      Inf          0           0
#> 5      Inf          0           0
#> 6      Inf          0           0
#> 7      Inf          0           0
#> 8      Inf          0           0
#> 9      Inf          0           0
#> 10     Inf          0           0
#> 11     Inf          0           0
#> 12     Inf          0           0
#> 13     Inf          0           0
#> 14     Inf          0           0
#> 15     Inf          0           0
#> 16     Inf          0           0
#> 17     Inf          0           0
#> 18     Inf          0           0
#> 19     Inf          0           0
#> 20     Inf          0           0

# Frequencies splitted by gender and likesc
res3 <- BIFIEsurvey::BIFIE.freq( bdat, vars=c("lang", "books", "migrant" ),
              group=c("likesc","female")  )
#> |*****|
#> |-----|
summary(res3)
#> ------------------------------------------------------------
#> BIFIEsurvey 3.8.0 () 
#> 
#> Function 'BIFIE.freq'
#> 
#> Call:
#> BIFIEsurvey::BIFIE.freq(BIFIEobj = bdat, vars = c("lang", "books", 
#>     "migrant"), group = c("likesc", "female"))
#> 
#> Date of Analysis: 2026-01-11 08:35:26.359272 
#> Time difference of 0.0707655 secs
#> Computation time: 0.0707655 
#> 
#> Multiply imputed dataset
#> 
#> Number of persons = 4668 
#> Number of imputed datasets = 5 
#> Number of Jackknife zones per dataset = 75 
#> Fay factor = 1 
#> 
#> Relative Frequencies 
#>        var varval groupvar1 groupval1 groupvar2 groupval2 Ncases   Nweight
#> 1     lang      1    likesc         1    female         0  476.8  7753.657
#> 2     lang      2    likesc         1    female         0  184.4  2629.250
#> 3     lang      3    likesc         1    female         0   35.0   578.736
#> 4     lang      1    likesc         2    female         0  636.2 10861.713
#> 5     lang      2    likesc         2    female         0  160.4  2433.276
#> 6     lang      3    likesc         2    female         0   30.0   437.579
#> 7     lang      1    likesc         3    female         0  340.2  5988.767
#> 8     lang      2    likesc         3    female         0   66.2  1084.629
#> 9     lang      3    likesc         3    female         0   12.4   227.984
#> 10    lang      1    likesc         4    female         0  343.8  6550.741
#> 11    lang      2    likesc         4    female         0   80.6  1188.717
#> 12    lang      3    likesc         4    female         0   22.6   394.717
#> 13    lang      1    likesc         1    female         1  664.8 11056.357
#> 14    lang      2    likesc         1    female         1  291.4  4274.646
#> 15    lang      3    likesc         1    female         1   27.0   486.130
#> 16    lang      1    likesc         2    female         1  704.0 12411.598
#> 17    lang      2    likesc         2    female         1  188.8  2985.935
#> 18    lang      3    likesc         2    female         1   22.4   368.309
#> 19    lang      1    likesc         3    female         1  219.8  3973.145
#> 20    lang      2    likesc         3    female         1   44.0   650.916
#> 21    lang      3    likesc         3    female         1    7.0   107.634
#> 22    lang      1    likesc         4    female         1   86.6  1525.865
#> 23    lang      2    likesc         4    female         1   20.6   317.328
#> 24    lang      3    likesc         4    female         1    3.0    45.360
#> 25   books      1    likesc         1    female         0   93.4  1351.248
#> 26   books      2    likesc         1    female         0  182.6  3088.496
#> 27   books      3    likesc         1    female         0  219.6  3414.338
#> 28   books      4    likesc         1    female         0   94.2  1402.450
#> 29   books      5    likesc         1    female         0  106.4  1705.110
#> 30   books      1    likesc         2    female         0   89.0  1514.176
#> 31   books      2    likesc         2    female         0  210.8  3586.583
#> 32   books      3    likesc         2    female         0  291.8  4969.593
#> 33   books      4    likesc         2    female         0  119.8  1865.415
#> 34   books      5    likesc         2    female         0  115.2  1796.799
#> 35   books      1    likesc         3    female         0   53.2   873.236
#> 36   books      2    likesc         3    female         0   99.8  1882.140
#> 37   books      3    likesc         3    female         0  155.4  2655.844
#> 38   books      4    likesc         3    female         0   60.8  1078.228
#> 39   books      5    likesc         3    female         0   49.6   811.932
#> 40   books      1    likesc         4    female         0   78.4  1519.777
#> 41   books      2    likesc         4    female         0  119.0  2092.083
#> 42   books      3    likesc         4    female         0  132.8  2504.310
#> 43   books      4    likesc         4    female         0   50.6   946.000
#> 44   books      5    likesc         4    female         0   66.2  1072.006
#> 45   books      1    likesc         1    female         1   88.4  1265.480
#> 46   books      2    likesc         1    female         1  256.0  4023.914
#> 47   books      3    likesc         1    female         1  355.6  5733.673
#> 48   books      4    likesc         1    female         1  159.2  2650.750
#> 49   books      5    likesc         1    female         1  124.0  2143.315
#> 50   books      1    likesc         2    female         1   47.6   671.864
#> 51   books      2    likesc         2    female         1  247.6  4277.250
#> 52   books      3    likesc         2    female         1  367.2  6489.977
#> 53   books      4    likesc         2    female         1  158.0  2805.028
#> 54   books      5    likesc         2    female         1   94.8  1521.723
#> 55   books      1    likesc         3    female         1   17.0   389.928
#> 56   books      2    likesc         3    female         1   67.4  1178.250
#> 57   books      3    likesc         3    female         1  100.0  1744.478
#> 58   books      4    likesc         3    female         1   47.6   745.944
#> 59   books      5    likesc         3    female         1   38.8   673.095
#> 60   books      1    likesc         4    female         1   17.0   303.758
#> 61   books      2    likesc         4    female         1   30.0   473.977
#> 62   books      3    likesc         4    female         1   35.2   721.682
#> 63   books      4    likesc         4    female         1   18.6   260.995
#> 64   books      5    likesc         4    female         1    9.4   128.141
#> 65 migrant      0    likesc         1    female         0  484.6  8064.777
#> 66 migrant      1    likesc         1    female         0  211.6  2896.866
#> 67 migrant      0    likesc         2    female         0  653.4 11162.898
#> 68 migrant      1    likesc         2    female         0  173.2  2569.669
#> 69 migrant      0    likesc         3    female         0  356.4  6313.157
#> 70 migrant      1    likesc         3    female         0   62.4   988.223
#> 71 migrant      0    likesc         4    female         0  363.2  6777.172
#> 72 migrant      1    likesc         4    female         0   83.8  1357.005
#> 73 migrant      0    likesc         1    female         1  688.0 11482.736
#> 74 migrant      1    likesc         1    female         1  295.2  4334.397
#> 75 migrant      0    likesc         2    female         1  744.0 13166.386
#> 76 migrant      1    likesc         2    female         1  171.2  2599.456
#> 77 migrant      0    likesc         3    female         1  229.4  4184.403
#> 78 migrant      1    likesc         3    female         1   41.4   547.292
#> 79 migrant      0    likesc         4    female         1   95.6  1648.823
#> 80 migrant      1    likesc         4    female         1   14.6   239.730
#>     perc perc_SE perc_fmi perc_df perc_VarMI perc_VarRep
#> 1  0.707   0.019    0.018     Inf          0       0.000
#> 2  0.240   0.018    0.023     Inf          0       0.000
#> 3  0.053   0.011    0.038     Inf          0       0.000
#> 4  0.791   0.016    0.005     Inf          0       0.000
#> 5  0.177   0.015    0.018     Inf          0       0.000
#> 6  0.032   0.006    0.019     Inf          0       0.000
#> 7  0.820   0.027    0.029     Inf          0       0.001
#> 8  0.149   0.027    0.019     Inf          0       0.001
#> 9  0.031   0.011    0.013     Inf          0       0.000
#> 10 0.805   0.024    0.052     Inf          0       0.001
#> 11 0.146   0.020    0.067  890.03          0       0.000
#> 12 0.049   0.012    0.006     Inf          0       0.000
#> 13 0.699   0.021    0.035     Inf          0       0.000
#> 14 0.270   0.020    0.039     Inf          0       0.000
#> 15 0.031   0.006    0.000     Inf          0       0.000
#> 16 0.787   0.017    0.029     Inf          0       0.000
#> 17 0.189   0.016    0.034     Inf          0       0.000
#> 18 0.023   0.006    0.020     Inf          0       0.000
#> 19 0.840   0.021    0.014     Inf          0       0.000
#> 20 0.138   0.018    0.020     Inf          0       0.000
#> 21 0.023   0.009    0.000     Inf          0       0.000
#> 22 0.808   0.044    0.021     Inf          0       0.002
#> 23 0.168   0.042    0.025     Inf          0       0.002
#> 24 0.024   0.015    0.001     Inf          0       0.000
#> 25 0.123   0.015    0.074  740.15          0       0.000
#> 26 0.282   0.027    0.019     Inf          0       0.001
#> 27 0.311   0.018    0.019     Inf          0       0.000
#> 28 0.128   0.017    0.014     Inf          0       0.000
#> 29 0.156   0.018    0.086  540.97          0       0.000
#> 30 0.110   0.017    0.008     Inf          0       0.000
#> 31 0.261   0.016    0.030     Inf          0       0.000
#> 32 0.362   0.021    0.056     Inf          0       0.000
#> 33 0.136   0.012    0.027     Inf          0       0.000
#> 34 0.131   0.014    0.019     Inf          0       0.000
#> 35 0.120   0.020    0.043     Inf          0       0.000
#> 36 0.258   0.030    0.099  408.77          0       0.001
#> 37 0.364   0.032    0.111  324.61          0       0.001
#> 38 0.148   0.019    0.029     Inf          0       0.000
#> 39 0.111   0.019    0.051     Inf          0       0.000
#> 40 0.187   0.024    0.049     Inf          0       0.001
#> 41 0.257   0.027    0.022     Inf          0       0.001
#> 42 0.308   0.029    0.045     Inf          0       0.001
#> 43 0.116   0.016    0.015     Inf          0       0.000
#> 44 0.132   0.019    0.041     Inf          0       0.000
#> 45 0.080   0.008    0.016     Inf          0       0.000
#> 46 0.254   0.021    0.030     Inf          0       0.000
#> 47 0.363   0.020    0.030     Inf          0       0.000
#> 48 0.168   0.014    0.036     Inf          0       0.000
#> 49 0.136   0.015    0.047     Inf          0       0.000
#> 50 0.043   0.008    0.028     Inf          0       0.000
#> 51 0.271   0.020    0.015     Inf          0       0.000
#> 52 0.412   0.019    0.011     Inf          0       0.000
#> 53 0.178   0.018    0.011     Inf          0       0.000
#> 54 0.097   0.013    0.026     Inf          0       0.000
#> 55 0.082   0.035    0.004     Inf          0       0.001
#> 56 0.249   0.031    0.036     Inf          0       0.001
#> 57 0.369   0.035    0.010     Inf          0       0.001
#> 58 0.158   0.024    0.032     Inf          0       0.001
#> 59 0.142   0.026    0.019     Inf          0       0.001
#> 60 0.161   0.037    0.006     Inf          0       0.001
#> 61 0.251   0.048    0.020     Inf          0       0.002
#> 62 0.382   0.052    0.070  825.93          0       0.003
#> 63 0.138   0.034    0.037     Inf          0       0.001
#> 64 0.068   0.022    0.212   89.41          0       0.000
#> 65 0.736   0.020    0.006     Inf          0       0.000
#> 66 0.264   0.020    0.006     Inf          0       0.000
#> 67 0.813   0.018    0.016     Inf          0       0.000
#> 68 0.187   0.018    0.016     Inf          0       0.000
#> 69 0.865   0.035    0.013     Inf          0       0.001
#> 70 0.135   0.035    0.013     Inf          0       0.001
#> 71 0.833   0.020    0.037     Inf          0       0.000
#> 72 0.167   0.020    0.037     Inf          0       0.000
#> 73 0.726   0.020    0.021     Inf          0       0.000
#> 74 0.274   0.020    0.021     Inf          0       0.000
#> 75 0.835   0.019    0.049     Inf          0       0.000
#> 76 0.165   0.019    0.049     Inf          0       0.000
#> 77 0.884   0.022    0.031     Inf          0       0.000
#> 78 0.116   0.022    0.031     Inf          0       0.000
#> 79 0.873   0.039    0.043     Inf          0       0.001
#> 80 0.127   0.039    0.043     Inf          0       0.001