Missing Value Analysis
BIFIE.mva.RdConducts a missing value analysis.
Usage
BIFIE.mva( BIFIEobj, missvars, covariates=NULL, se=TRUE )
# S3 method for class 'BIFIE.mva'
summary(object,digits=4,...)Arguments
- BIFIEobj
Object of class
BIFIEdata- missvars
Vector of variables for which missing value statistics should be computed
- covariates
Vector of variables which work as covariates
- se
Optional logical indicating whether statistical inference based on replication should be employed.
- object
Object of class
BIFIE.correl- digits
Number of digits for rounding output
- ...
Further arguments to be passed
Value
A list with following entries
- stat.mva
Data frame with missing value statistics
- res_list
List with extensive output split according to each variable in
missvars- ...
More values
Examples
#############################################################################
# EXAMPLE 1: Imputed TIMSS dataset
#############################################################################
data(data.timss1)
data(data.timssrep)
# create BIFIE.dat object
BIFIEdata <- BIFIEsurvey::BIFIE.data( data.list=data.timss1,
wgt=data.timss1[[1]]$TOTWGT, wgtrep=data.timssrep[, -1 ] )
#> +++ Generate BIFIE.data object
#> |*****|
#> |-----|
# missing value analysis for "scsci" and "books" and three covariates
res1 <- BIFIEsurvey::BIFIE.mva( BIFIEdata, missvars=c("scsci", "books" ),
covariates=c("ASMMAT", "female", "ASSSCI") )
#> |*****|
#> |-----|
#> |-----|
#> |*****|
#> |-----|
#> |-----|
summary(res1)
#> ------------------------------------------------------------
#> BIFIEsurvey 3.8.0 ()
#>
#> Function 'BIFIE.mva'
#>
#> Call:
#> BIFIEsurvey::BIFIE.mva(BIFIEobj = BIFIEdata, missvars = c("scsci",
#> "books"), covariates = c("ASMMAT", "female", "ASSSCI"))
#>
#> Date of Analysis: 2026-01-11 08:35:28.157541
#> Time difference of 0.1308637 secs
#> Computation time: 0.1308637
#>
#> Multiply imputed dataset
#>
#> Number of persons = 4668
#> Number of imputed datasets = 5
#> Number of Jackknife zones per dataset = 75
#> Fay factor = 1
#>
#> Missing Value Analysis
#> respvar missprop covariate d d_SE M_resp M_miss SD_resp
#> 1 resp_scsci 0.0264 ASMMAT -0.2453 0.1262 508.7303 492.8726 62.5307
#> 2 resp_scsci 0.0264 female -0.0191 0.1043 0.4880 0.4784 0.4999
#> 3 resp_scsci 0.0264 ASSSCI -0.2828 0.1211 532.0598 510.9723 70.1550
#> 4 resp_books 0.0221 ASMMAT -0.5583 0.1182 509.0749 474.4610 62.5112
#> 5 resp_books 0.0221 female -0.2755 0.1090 0.4907 0.3558 0.4999
#> 6 resp_books 0.0221 ASSSCI -0.5538 0.1399 532.3883 492.2369 70.1175
#> SD_miss
#> 1 66.6633
#> 2 0.4996
#> 3 78.7391
#> 4 61.4851
#> 5 0.4789
#> 6 74.8985
# missing value analysis without statistical inference and without covariates
res2 <- BIFIEsurvey::BIFIE.mva( BIFIEdata, missvars=c("scsci", "books"), se=FALSE)
#> |*****|
#> |-----|
#> |-----|
#> |*****|
#> |-----|
#> |-----|
summary(res2)
#> ------------------------------------------------------------
#> BIFIEsurvey 3.8.0 ()
#>
#> Function 'BIFIE.mva'
#>
#> Call:
#> BIFIEsurvey::BIFIE.mva(BIFIEobj = BIFIEdata, missvars = c("scsci",
#> "books"), se = FALSE)
#>
#> Date of Analysis: 2026-01-11 08:35:28.292394
#> Time difference of 0.01096869 secs
#> Computation time: 0.01096869
#>
#> Multiply imputed dataset
#>
#> Number of persons = 4668
#> Number of imputed datasets = 5
#> Number of Jackknife zones per dataset = 2
#> Fay factor = 1
#>
#> Missing Value Analysis
#> respvar missprop
#> 1 resp_scsci 0.0264
#> 2 resp_books 0.0221