Skip to contents

Conducts a missing value analysis.

Usage

BIFIE.mva( BIFIEobj, missvars, covariates=NULL, se=TRUE )

# S3 method for class 'BIFIE.mva'
summary(object,digits=4,...)

Arguments

BIFIEobj

Object of class BIFIEdata

missvars

Vector of variables for which missing value statistics should be computed

covariates

Vector of variables which work as covariates

se

Optional logical indicating whether statistical inference based on replication should be employed.

object

Object of class BIFIE.correl

digits

Number of digits for rounding output

...

Further arguments to be passed

Value

A list with following entries

stat.mva

Data frame with missing value statistics

res_list

List with extensive output split according to each variable in missvars

...

More values

Examples

#############################################################################
# EXAMPLE 1: Imputed TIMSS dataset
#############################################################################

data(data.timss1)
data(data.timssrep)

# create BIFIE.dat object
BIFIEdata <- BIFIEsurvey::BIFIE.data( data.list=data.timss1,
                wgt=data.timss1[[1]]$TOTWGT, wgtrep=data.timssrep[, -1 ] )
#> +++ Generate BIFIE.data object
#> |*****|
#> |-----|

# missing value analysis for "scsci" and "books" and three covariates
res1 <- BIFIEsurvey::BIFIE.mva( BIFIEdata, missvars=c("scsci", "books" ),
             covariates=c("ASMMAT", "female", "ASSSCI") )
#> |*****|
#> |-----|
#> |-----|
#> |*****|
#> |-----|
#> |-----|
summary(res1)
#> ------------------------------------------------------------
#> BIFIEsurvey 3.8.0 () 
#> 
#> Function 'BIFIE.mva'
#> 
#> Call:
#> BIFIEsurvey::BIFIE.mva(BIFIEobj = BIFIEdata, missvars = c("scsci", 
#>     "books"), covariates = c("ASMMAT", "female", "ASSSCI"))
#> 
#> Date of Analysis: 2026-01-11 08:35:28.157541 
#> Time difference of 0.1308637 secs
#> Computation time: 0.1308637 
#> 
#> Multiply imputed dataset
#> 
#> Number of persons = 4668 
#> Number of imputed datasets = 5 
#> Number of Jackknife zones per dataset = 75 
#> Fay factor = 1 
#> 
#> Missing Value Analysis 
#>      respvar missprop covariate       d   d_SE   M_resp   M_miss SD_resp
#> 1 resp_scsci   0.0264    ASMMAT -0.2453 0.1262 508.7303 492.8726 62.5307
#> 2 resp_scsci   0.0264    female -0.0191 0.1043   0.4880   0.4784  0.4999
#> 3 resp_scsci   0.0264    ASSSCI -0.2828 0.1211 532.0598 510.9723 70.1550
#> 4 resp_books   0.0221    ASMMAT -0.5583 0.1182 509.0749 474.4610 62.5112
#> 5 resp_books   0.0221    female -0.2755 0.1090   0.4907   0.3558  0.4999
#> 6 resp_books   0.0221    ASSSCI -0.5538 0.1399 532.3883 492.2369 70.1175
#>   SD_miss
#> 1 66.6633
#> 2  0.4996
#> 3 78.7391
#> 4 61.4851
#> 5  0.4789
#> 6 74.8985

# missing value analysis without statistical inference and without covariates
res2 <- BIFIEsurvey::BIFIE.mva( BIFIEdata, missvars=c("scsci", "books"), se=FALSE)
#> |*****|
#> |-----|
#> |-----|
#> |*****|
#> |-----|
#> |-----|
summary(res2)
#> ------------------------------------------------------------
#> BIFIEsurvey 3.8.0 () 
#> 
#> Function 'BIFIE.mva'
#> 
#> Call:
#> BIFIEsurvey::BIFIE.mva(BIFIEobj = BIFIEdata, missvars = c("scsci", 
#>     "books"), se = FALSE)
#> 
#> Date of Analysis: 2026-01-11 08:35:28.292394 
#> Time difference of 0.01096869 secs
#> Computation time: 0.01096869 
#> 
#> Multiply imputed dataset
#> 
#> Number of persons = 4668 
#> Number of imputed datasets = 5 
#> Number of Jackknife zones per dataset = 2 
#> Fay factor = 1 
#> 
#> Missing Value Analysis 
#>      respvar missprop
#> 1 resp_scsci   0.0264
#> 2 resp_books   0.0221