Standard Errors of Estimated Parameters
se.RdOutputs vector of standard errors of an estimated parameter vector.
Examples
#############################################################################
# EXAMPLE 1: Toy example with lm function
#############################################################################
set.seed(906)
N <- 100
x <- seq(0,1,length=N)
y <- .6*x + stats::rnorm(N, sd=1)
mod <- stats::lm( y ~ x )
coef(mod)
#> (Intercept) x
#> -0.2400624 0.9804859
vcov(mod)
#> (Intercept) x
#> (Intercept) 0.04197905 -0.06265215
#> x -0.06265215 0.12530431
se(mod)
#> (Intercept) x
#> 0.2048879 0.3539835
summary(mod)
#>
#> Call:
#> stats::lm(formula = y ~ x)
#>
#> Residuals:
#> Min 1Q Median 3Q Max
#> -2.63243 -0.66176 -0.01975 0.72220 2.57042
#>
#> Coefficients:
#> Estimate Std. Error t value Pr(>|t|)
#> (Intercept) -0.2401 0.2049 -1.172 0.24417
#> x 0.9805 0.3540 2.770 0.00671 **
#> ---
#> Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
#>
#> Residual standard error: 1.032 on 98 degrees of freedom
#> Multiple R-squared: 0.0726, Adjusted R-squared: 0.06314
#> F-statistic: 7.672 on 1 and 98 DF, p-value: 0.006709
#>