Skip to contents

Computes some univariate descriptive statistics (means and standard deviations).

Usage

BIFIE.univar(BIFIEobj, vars, group=NULL, group_values=NULL, se=TRUE)

# S3 method for class 'BIFIE.univar'
summary(object,digits=3,...)

# S3 method for class 'BIFIE.univar'
coef(object,...)

# S3 method for class 'BIFIE.univar'
vcov(object,...)

Arguments

BIFIEobj

Object of class BIFIEdata

vars

Vector of variables for which statistics should be computed

group

Optional grouping variable(s)

group_values

Optional vector of grouping values. This can be omitted and grouping values will be determined automatically.

se

Optional logical indicating whether statistical inference based on replication should be employed.

object

Object of class BIFIE.univar

digits

Number of digits for rounding output

...

Further arguments to be passed

Value

A list with following entries

stat

Data frame with univariate statistics

stat_M

Data frame with means

stat_SD

Data frame with standard deviations

output

Extensive output with all replicated statistics

...

More values

See also

See BIFIE.univar.test for a test of equal means and effect sizes \(\eta\) and \(d\).

Descriptive statistics without statistical inference can be estimated by the collection of miceadds::ma.wtd.statNA functions from the miceadds package.

Further descriptive functions:

survey::svymean, intsvy::timss.mean, intsvy::timss.mean.pv, stats::weighted.mean, Hmisc::wtd.mean, miceadds::ma.wtd.meanNA

survey::svyvar, Hmisc::wtd.var, miceadds::ma.wtd.sdNA, miceadds::ma.wtd.covNA

Examples

#############################################################################
# EXAMPLE 1: Imputed TIMSS dataset
#############################################################################

data(data.timss1)
data(data.timssrep)

# create BIFIE.dat object
bdat <- BIFIEsurvey::BIFIE.data( data.list=data.timss1, wgt=data.timss1[[1]]$TOTWGT,
           wgtrep=data.timssrep[, -1 ] )
#> +++ Generate BIFIE.data object
#> |*****|
#> |-----|

# compute descriptives for plausible values
res1 <- BIFIEsurvey::BIFIE.univar( bdat, vars=c("ASMMAT","ASSSCI","books") )
#> |*****|
#> |-----|
summary(res1)
#> ------------------------------------------------------------
#> BIFIEsurvey 3.8.0 () 
#> 
#> Function 'BIFIE.univar'
#> 
#> Call:
#> BIFIEsurvey::BIFIE.univar(BIFIEobj = bdat, vars = c("ASMMAT", 
#>     "ASSSCI", "books"))
#> 
#> Date of Analysis: 2026-01-11 08:35:30.129748 
#> Time difference of 0.05973172 secs
#> Computation time: 0.05973172 
#> 
#> Multiply imputed dataset
#> 
#> Number of persons = 4668 
#> Number of imputed datasets = 5 
#> Number of Jackknife zones per dataset = 75 
#> Fay factor = 1 
#> 
#> Univariate Statistics | Means
#>      var  Nweight Ncases       M  M_SE   M_df     M_t M_p M_fmi M_VarMI
#> 1 ASMMAT 78332.99   4668 508.311 2.617    Inf 194.268   0 0.050   0.284
#> 2 ASSSCI 78332.99   4668 531.502 2.886 369.42 184.185   0 0.104   0.722
#> 3  books 78332.99   4668   2.937 0.040    Inf  73.270   0 0.005   0.000
#>   M_VarRep
#> 1    6.505
#> 2    7.461
#> 3    0.002
#> 
#> Univariate Statistics | Standard Deviations
#>      var  Nweight Ncases     SD SD_SE SD_df    SD_t SD_p
#> 1 ASMMAT 78332.99   4668 62.696 1.088 57.07 467.401    0
#> 2 ASSSCI 78332.99   4668 70.477 1.344 28.07 395.539    0
#> 3  books 78332.99   4668  1.147 0.015   Inf 195.485    0

# split descriptives by number of books
res2 <- BIFIEsurvey::BIFIE.univar( bdat, vars=c("ASMMAT","ASSSCI"), group="books",
            group_values=1:5)
#> |*****|
#> |-----|
summary(res2)
#> ------------------------------------------------------------
#> BIFIEsurvey 3.8.0 () 
#> 
#> Function 'BIFIE.univar'
#> 
#> Call:
#> BIFIEsurvey::BIFIE.univar(BIFIEobj = bdat, vars = c("ASMMAT", 
#>     "ASSSCI"), group = "books", group_values = 1:5)
#> 
#> Date of Analysis: 2026-01-11 08:35:30.194969 
#> Time difference of 0.04463124 secs
#> Computation time: 0.04463124 
#> 
#> Multiply imputed dataset
#> 
#> Number of persons = 4668 
#> Number of imputed datasets = 5 
#> Number of Jackknife zones per dataset = 75 
#> Fay factor = 1 
#> 
#> Univariate Statistics | Means
#>       var groupvar groupval   Nweight Ncases       M  M_SE   M_df     M_t M_p
#> 1  ASMMAT    books        1  7889.467  484.0 462.463 4.704  67.69  98.307   0
#> 2  ASMMAT    books        2 20602.693 1213.2 488.408 3.455 798.28 141.366   0
#> 3  ASMMAT    books        3 28233.896 1657.6 516.889 2.408 123.28 214.692   0
#> 4  ASMMAT    books        4 11754.811  708.8 532.942 3.158 125.24 168.760   0
#> 5  ASMMAT    books        5  9852.122  604.4 532.664 3.210 304.41 165.944   0
#> 6  ASSSCI    books        1  7889.467  484.0 474.183 5.900  38.76  80.374   0
#> 7  ASSSCI    books        2 20602.693 1213.2 507.314 4.099 102.59 123.778   0
#> 8  ASSSCI    books        3 28233.896 1657.6 542.211 2.591  54.59 209.306   0
#> 9  ASSSCI    books        4 11754.811  708.8 559.753 3.273  87.11 171.008   0
#> 10 ASSSCI    books        5  9852.122  604.4 563.601 3.495 103.83 161.264   0
#>    M_fmi M_VarMI M_VarRep
#> 1  0.243   4.483   16.750
#> 2  0.071   0.704   11.092
#> 3  0.180   0.870    4.752
#> 4  0.179   1.485    8.191
#> 5  0.115   0.984    9.122
#> 6  0.321   9.318   23.625
#> 7  0.197   2.764   13.481
#> 8  0.271   1.514    4.894
#> 9  0.214   1.913    8.418
#> 10 0.196   1.998    9.817
#> 
#> Univariate Statistics | Standard Deviations
#>       var groupvar groupval   Nweight Ncases     SD SD_SE  SD_df    SD_t SD_p
#> 1  ASMMAT    books        1  7889.467  484.0 59.667 3.350  60.78 138.043    0
#> 2  ASMMAT    books        2 20602.693 1213.2 59.146 1.774 163.20 275.269    0
#> 3  ASMMAT    books        3 28233.896 1657.6 57.654 1.335  95.77 387.101    0
#> 4  ASMMAT    books        4 11754.811  708.8 57.709 1.863 640.19 286.114    0
#> 5  ASMMAT    books        5  9852.122  604.4 59.502 2.537  37.73 209.995    0
#> 6  ASSSCI    books        1  7889.467  484.0 71.334 3.286 642.31 144.321    0
#> 7  ASSSCI    books        2 20602.693 1213.2 66.532 1.806  91.17 280.916    0
#> 8  ASSSCI    books        3 28233.896 1657.6 62.825 1.643  22.53 329.936    0
#> 9  ASSSCI    books        4 11754.811  708.8 62.818 2.075 110.46 269.812    0
#> 10 ASSSCI    books        5  9852.122  604.4 62.951 2.759  64.39 204.256    0
#>    SD_fmi SD_VarMI SD_VarRep
#> 1   0.257    2.399     8.344
#> 2   0.157    0.411     2.655
#> 3   0.204    0.304     1.419
#> 4   0.079    0.229     3.195
#> 5   0.326    1.746     4.339
#> 6   0.079    0.710     9.943
#> 7   0.209    0.569     2.578
#> 8   0.421    0.948     1.563
#> 9   0.190    0.683     3.485
#> 10  0.249    1.581     5.716

#############################################################################
# EXAMPLE 2: TIMSS dataset with missings
#############################################################################

data(data.timss2)
data(data.timssrep)

# use first dataset with missing data from data.timss2
bdat1 <- BIFIEsurvey::BIFIE.data( data.list=data.timss2[[1]], wgt=data.timss2[[1]]$TOTWGT,
               wgtrep=data.timssrep[, -1 ])
#> +++ Generate BIFIE.data object
#> |*|
#> |-|

# some descriptive statistics without statistical inference
res1a <- BIFIEsurvey::BIFIE.univar( bdat1, vars=c("ASMMAT","ASSSCI","books"), se=FALSE)
#> |*|
#> |-|
# descriptive statistics with statistical inference
res1b <- BIFIEsurvey::BIFIE.univar( bdat1, vars=c("ASMMAT","ASSSCI","books") )
#> |*|
#> |-|
summary(res1a)
#> ------------------------------------------------------------
#> BIFIEsurvey 3.8.0 () 
#> 
#> Function 'BIFIE.univar'
#> 
#> Call:
#> BIFIEsurvey::BIFIE.univar(BIFIEobj = bdat1, vars = c("ASMMAT", 
#>     "ASSSCI", "books"), se = FALSE)
#> 
#> Date of Analysis: 2026-01-11 08:35:30.271156 
#> Time difference of 0.002158165 secs
#> Computation time: 0.002158165 
#> 
#> Multiply imputed dataset
#> 
#> Number of persons = 4668 
#> Number of imputed datasets = 1 
#> Number of Jackknife zones per dataset = 0 
#> Fay factor = 1 
#> 
#> Univariate Statistics | Means
#>      var  Nweight Ncases       M
#> 1 ASMMAT 78332.99   4668 508.590
#> 2 ASSSCI 78332.99   4668 532.906
#> 3  books 78332.99   4554   2.945
#> 
#> Univariate Statistics | Standard Deviations
#>      var  Nweight Ncases     SD
#> 1 ASMMAT 78332.99   4668 62.725
#> 2 ASSSCI 78332.99   4668 69.694
#> 3  books 78332.99   4554  1.146
summary(res1b)
#> ------------------------------------------------------------
#> BIFIEsurvey 3.8.0 () 
#> 
#> Function 'BIFIE.univar'
#> 
#> Call:
#> BIFIEsurvey::BIFIE.univar(BIFIEobj = bdat1, vars = c("ASMMAT", 
#>     "ASSSCI", "books"))
#> 
#> Date of Analysis: 2026-01-11 08:35:30.273863 
#> Time difference of 0.01287937 secs
#> Computation time: 0.01287937 
#> 
#> Multiply imputed dataset
#> 
#> Number of persons = 4668 
#> Number of imputed datasets = 1 
#> Number of Jackknife zones per dataset = 75 
#> Fay factor = 1 
#> 
#> Univariate Statistics | Means
#>      var  Nweight Ncases       M  M_SE M_df     M_t M_p M_VarRep
#> 1 ASMMAT 78332.99   4668 508.590 2.575   NA 197.535  NA    6.629
#> 2 ASSSCI 78332.99   4668 532.906 2.691   NA 198.033  NA    7.241
#> 3  books 78332.99   4554   2.945 0.040   NA  73.110  NA    0.002
#> 
#> Univariate Statistics | Standard Deviations
#>      var  Nweight Ncases     SD SD_SE SD_df    SD_t SD_p
#> 1 ASMMAT 78332.99   4668 62.725 0.948    NA 536.334   NA
#> 2 ASSSCI 78332.99   4668 69.694 1.123    NA 474.625   NA
#> 3  books 78332.99   4554  1.146 0.015    NA 195.134   NA

# split descriptives by number of books
res2 <- BIFIEsurvey::BIFIE.univar( bdat1, vars=c("ASMMAT","ASSSCI"), group="books")
#> |*|
#> |-|
# Note that if group_values is not specified as an argument it will be
# automatically determined by the observed frequencies in the dataset
summary(res2)
#> ------------------------------------------------------------
#> BIFIEsurvey 3.8.0 () 
#> 
#> Function 'BIFIE.univar'
#> 
#> Call:
#> BIFIEsurvey::BIFIE.univar(BIFIEobj = bdat1, vars = c("ASMMAT", 
#>     "ASSSCI"), group = "books")
#> 
#> Date of Analysis: 2026-01-11 08:35:30.294626 
#> Time difference of 0.01047182 secs
#> Computation time: 0.01047182 
#> 
#> Multiply imputed dataset
#> 
#> Number of persons = 4668 
#> Number of imputed datasets = 1 
#> Number of Jackknife zones per dataset = 75 
#> Fay factor = 1 
#> 
#> Univariate Statistics | Means
#>       var groupvar groupval   Nweight Ncases       M  M_SE M_df     M_t M_p
#> 1  ASMMAT    books        1  7609.320    464 466.444 4.520   NA 103.201  NA
#> 2  ASMMAT    books        2 19993.365   1174 489.631 3.044   NA 160.834  NA
#> 3  ASMMAT    books        3 27691.856   1622 517.070 2.179   NA 237.342  NA
#> 4  ASMMAT    books        4 11591.981    699 533.460 2.888   NA 184.719  NA
#> 5  ASMMAT    books        5  9702.202    595 532.790 3.046   NA 174.932  NA
#> 6  ASSSCI    books        1  7609.320    464 476.618 4.848   NA  98.315  NA
#> 7  ASSSCI    books        2 19993.365   1174 510.318 3.676   NA 138.820  NA
#> 8  ASSSCI    books        3 27691.856   1622 544.548 2.143   NA 254.100  NA
#> 9  ASSSCI    books        4 11591.981    699 560.435 3.011   NA 186.104  NA
#> 10 ASSSCI    books        5  9702.202    595 563.692 3.336   NA 168.961  NA
#>    M_VarRep
#> 1    20.428
#> 2     9.268
#> 3     4.746
#> 4     8.340
#> 5     9.276
#> 6    23.502
#> 7    13.514
#> 8     4.593
#> 9     9.069
#> 10   11.130
#> 
#> Univariate Statistics | Standard Deviations
#>       var groupvar groupval   Nweight Ncases     SD SD_SE SD_df    SD_t SD_p
#> 1  ASMMAT    books        1  7609.320    464 61.668 2.897    NA 161.007   NA
#> 2  ASMMAT    books        2 19993.365   1174 59.064 1.338    NA 366.013   NA
#> 3  ASMMAT    books        3 27691.856   1622 57.346 1.201    NA 430.496   NA
#> 4  ASMMAT    books        4 11591.981    699 58.107 2.147    NA 248.451   NA
#> 5  ASMMAT    books        5  9702.202    595 60.051 1.891    NA 281.705   NA
#> 6  ASSSCI    books        1  7609.320    464 70.792 3.258    NA 146.313   NA
#> 7  ASSSCI    books        2 19993.365   1174 65.278 1.741    NA 293.111   NA
#> 8  ASSSCI    books        3 27691.856   1622 61.913 1.206    NA 451.425   NA
#> 9  ASSSCI    books        4 11591.981    699 61.476 1.879    NA 298.189   NA
#> 10 ASSSCI    books        5  9702.202    595 63.620 2.789    NA 202.078   NA
#>    SD_VarRep
#> 1      8.393
#> 2      1.790
#> 3      1.443
#> 4      4.610
#> 5      3.577
#> 6     10.611
#> 7      3.031
#> 8      1.455
#> 9      3.532
#> 10     7.781