Skip to contents

Computes a Wald test which tests equality of means (univariate analysis of variance). In addition, the \(d\) and \(\eta\) effect sizes are computed.

Usage

BIFIE.univar.test(BIFIE.method, wald_test=TRUE)

# S3 method for class 'BIFIE.univar.test'
summary(object,digits=4,...)

Arguments

BIFIE.method

Object of class BIFIE.univar

wald_test

Optional logical indicating whether a Wald test should be performed.

object

Object of class BIFIE.univar.test

digits

Number of digits for rounding output

...

Further arguments to be passed

Value

A list with following entries

stat.F

Data frame with \(F\) statistic for Wald test

stat.eta

Data frame with \(\eta\) effect size and its inference

stat.dstat

Data frame with Cohen's \(d\) effect size and its inference

...

More values

See also

Examples

#############################################################################
# EXAMPLE 1: Imputed TIMSS dataset - One grouping variable
#############################################################################

data(data.timss1)
data(data.timssrep)

# create BIFIE.dat object
bdat <- BIFIEsurvey::BIFIE.data( data.list=data.timss1, wgt=data.timss1[[1]]$TOTWGT,
           wgtrep=data.timssrep[, -1 ] )
#> +++ Generate BIFIE.data object
#> |*****|
#> |-----|

#**** Model 1: 3 variables splitted by book
res1 <- BIFIEsurvey::BIFIE.univar( bdat, vars=c("ASMMAT", "ASSSCI","scsci"),
                    group="books")
#> |*****|
#> |-----|
summary(res1)
#> ------------------------------------------------------------
#> BIFIEsurvey 3.8.0 () 
#> 
#> Function 'BIFIE.univar'
#> 
#> Call:
#> BIFIEsurvey::BIFIE.univar(BIFIEobj = bdat, vars = c("ASMMAT", 
#>     "ASSSCI", "scsci"), group = "books")
#> 
#> Date of Analysis: 2026-01-11 08:35:30.647305 
#> Time difference of 0.06618857 secs
#> Computation time: 0.06618857 
#> 
#> Multiply imputed dataset
#> 
#> Number of persons = 4668 
#> Number of imputed datasets = 5 
#> Number of Jackknife zones per dataset = 75 
#> Fay factor = 1 
#> 
#> Univariate Statistics | Means
#>       var groupvar groupval   Nweight Ncases       M  M_SE   M_df     M_t M_p
#> 1  ASMMAT    books        1  7889.467  484.0 462.463 4.704  67.69  98.307   0
#> 2  ASMMAT    books        2 20602.693 1213.2 488.408 3.455 798.28 141.366   0
#> 3  ASMMAT    books        3 28233.896 1657.6 516.889 2.408 123.28 214.692   0
#> 4  ASMMAT    books        4 11754.811  708.8 532.942 3.158 125.24 168.760   0
#> 5  ASMMAT    books        5  9852.122  604.4 532.664 3.210 304.41 165.944   0
#> 6  ASSSCI    books        1  7889.467  484.0 474.183 5.900  38.76  80.374   0
#> 7  ASSSCI    books        2 20602.693 1213.2 507.314 4.099 102.59 123.778   0
#> 8  ASSSCI    books        3 28233.896 1657.6 542.211 2.591  54.59 209.306   0
#> 9  ASSSCI    books        4 11754.811  708.8 559.753 3.273  87.11 171.008   0
#> 10 ASSSCI    books        5  9852.122  604.4 563.601 3.495 103.83 161.264   0
#> 11  scsci    books        1  7889.467  484.0   2.132 0.060    Inf  35.316   0
#> 12  scsci    books        2 20602.693 1213.2   1.896 0.034    Inf  56.501   0
#> 13  scsci    books        3 28233.896 1657.6   1.771 0.025    Inf  71.743   0
#> 14  scsci    books        4 11754.811  708.8   1.652 0.034 381.58  49.151   0
#> 15  scsci    books        5  9852.122  604.4   1.654 0.038    Inf  43.270   0
#>    M_fmi M_VarMI M_VarRep
#> 1  0.243   4.483   16.750
#> 2  0.071   0.704   11.092
#> 3  0.180   0.870    4.752
#> 4  0.179   1.485    8.191
#> 5  0.115   0.984    9.122
#> 6  0.321   9.318   23.625
#> 7  0.197   2.764   13.481
#> 8  0.271   1.514    4.894
#> 9  0.214   1.913    8.418
#> 10 0.196   1.998    9.817
#> 11 0.031   0.000    0.004
#> 12 0.039   0.000    0.001
#> 13 0.033   0.000    0.001
#> 14 0.102   0.000    0.001
#> 15 0.061   0.000    0.001
#> 
#> Univariate Statistics | Standard Deviations
#>       var groupvar groupval   Nweight Ncases     SD SD_SE  SD_df    SD_t SD_p
#> 1  ASMMAT    books        1  7889.467  484.0 59.667 3.350  60.78 138.043    0
#> 2  ASMMAT    books        2 20602.693 1213.2 59.146 1.774 163.20 275.269    0
#> 3  ASMMAT    books        3 28233.896 1657.6 57.654 1.335  95.77 387.101    0
#> 4  ASMMAT    books        4 11754.811  708.8 57.709 1.863 640.19 286.114    0
#> 5  ASMMAT    books        5  9852.122  604.4 59.502 2.537  37.73 209.995    0
#> 6  ASSSCI    books        1  7889.467  484.0 71.334 3.286 642.31 144.321    0
#> 7  ASSSCI    books        2 20602.693 1213.2 66.532 1.806  91.17 280.916    0
#> 8  ASSSCI    books        3 28233.896 1657.6 62.825 1.643  22.53 329.936    0
#> 9  ASSSCI    books        4 11754.811  708.8 62.818 2.075 110.46 269.812    0
#> 10 ASSSCI    books        5  9852.122  604.4 62.951 2.759  64.39 204.256    0
#> 11  scsci    books        1  7889.467  484.0  1.049 0.027    Inf  77.933    0
#> 12  scsci    books        2 20602.693 1213.2  0.924 0.020    Inf  96.421    0
#> 13  scsci    books        3 28233.896 1657.6  0.815 0.020    Inf  86.572    0
#> 14  scsci    books        4 11754.811  708.8  0.786 0.032 972.60  51.580    0
#> 15  scsci    books        5  9852.122  604.4  0.851 0.031    Inf  53.503    0
#>    SD_fmi SD_VarMI SD_VarRep
#> 1   0.257    2.399     8.344
#> 2   0.157    0.411     2.655
#> 3   0.204    0.304     1.419
#> 4   0.079    0.229     3.195
#> 5   0.326    1.746     4.339
#> 6   0.079    0.710     9.943
#> 7   0.209    0.569     2.578
#> 8   0.421    0.948     1.563
#> 9   0.190    0.683     3.485
#> 10  0.249    1.581     5.716
#> 11  0.014    0.000     0.001
#> 12  0.035    0.000     0.000
#> 13  0.044    0.000     0.000
#> 14  0.064    0.000     0.001
#> 15  0.026    0.000     0.001
# analysis of variance
tres1 <- BIFIEsurvey::BIFIE.univar.test(res1)
#> |-----|
summary(tres1)
#> ------------------------------------------------------------
#> BIFIEsurvey 3.8.0 () 
#> 
#> Function 'BIFIE.univar.test'
#> 
#> Call:
#> BIFIEsurvey::BIFIE.univar.test(BIFIE.method = res1)
#> 
#> Date of Analysis: 2026-01-11 08:35:30.72077 
#> Time difference of 0.005226851 secs
#> Computation time: 0.005226851 
#> 
#> Multiply imputed dataset
#> 
#> Number of persons = 4668 
#> Number of imputed datasets = 5 
#> Number of Jackknife zones per dataset = 75 
#> Fay factor = 1 
#> 
#> F Test (ANOVA) 
#>   variable group      D1      D2 df1 D1_df2 D2_df2   D1_p   D2_p
#> 1   ASMMAT books 63.9526 29.3047   4   35.0    4.1 0.0000 0.0029
#> 2   ASSSCI books 59.3973 20.1403   4   40.7    2.9 0.0000 0.0181
#> 3    scsci books 17.1813 17.2584   4    6.4  350.9 0.0015 0.0000
#> 
#> Eta Squared 
#>      var group   eta2    eta eta_SE    fmi     df  VarMI VarRep
#> 1 ASMMAT books 0.1294 0.3597 0.0211 0.1954 104.79 0.0001 0.0004
#> 2 ASSSCI books 0.1564 0.3954 0.0206 0.0549    Inf 0.0000 0.0004
#> 3  scsci books 0.0254 0.1593 0.0194 0.0716 780.12 0.0000 0.0003
#> 
#> Cohen's d Statistic 
#>       var group groupval1 groupval2       M1       M2      SD       d   d_SE
#> 1  ASMMAT books         1         2 462.4629 488.4080 59.4069 -0.4373 0.0855
#> 2  ASMMAT books         1         3 462.4629 516.8889 58.6692 -0.9283 0.1007
#> 3  ASMMAT books         1         4 462.4629 532.9423 58.6959 -1.2013 0.1026
#> 4  ASMMAT books         1         5 462.4629 532.6644 59.5847 -1.1788 0.1153
#> 5  ASMMAT books         2         3 488.4080 516.8889 58.4049 -0.4876 0.0547
#> 6  ASMMAT books         2         4 488.4080 532.9423 58.4317 -0.7620 0.0655
#> 7  ASMMAT books         2         5 488.4080 532.6644 59.3245 -0.7459 0.0773
#> 8  ASMMAT books         3         4 516.8889 532.9423 57.6815 -0.2782 0.0578
#> 9  ASMMAT books         3         5 516.8889 532.6644 58.5857 -0.2692 0.0592
#> 10 ASMMAT books         4         5 532.9423 532.6644 58.6124  0.0046 0.0665
#> 11 ASSSCI books         1         2 474.1829 507.3136 68.9746 -0.4801 0.0935
#> 12 ASSSCI books         1         3 474.1829 542.2113 67.2139 -1.0119 0.0870
#> 13 ASSSCI books         1         4 474.1829 559.7534 67.2106 -1.2729 0.1097
#> 14 ASSSCI books         1         5 474.1829 563.6009 67.2732 -1.3290 0.1122
#> 15 ASSSCI books         2         3 507.3136 542.2113 64.7048 -0.5395 0.0583
#> 16 ASSSCI books         2         4 507.3136 559.7534 64.7014 -0.8104 0.0656
#> 17 ASSSCI books         2         5 507.3136 563.6009 64.7664 -0.8693 0.0913
#> 18 ASSSCI books         3         4 542.2113 559.7534 62.8211 -0.2790 0.0591
#> 19 ASSSCI books         3         5 542.2113 563.6009 62.8880 -0.3402 0.0680
#> 20 ASSSCI books         4         5 559.7534 563.6009 62.8845 -0.0614 0.0761
#> 21  scsci books         1         2   2.1318   1.8956  0.9881  0.2390 0.0626
#> 22  scsci books         1         3   2.1318   1.7712  0.9393  0.3839 0.0635
#> 23  scsci books         1         4   2.1318   1.6515  0.9267  0.5183 0.0781
#> 24  scsci books         1         5   2.1318   1.6542  0.9549  0.5001 0.0675
#> 25  scsci books         2         3   1.8956   1.7712  0.8710  0.1428 0.0468
#> 26  scsci books         2         4   1.8956   1.6515  0.8575  0.2847 0.0551
#> 27  scsci books         2         5   1.8956   1.6542  0.8879  0.2719 0.0587
#> 28  scsci books         3         4   1.7712   1.6515  0.8007  0.1496 0.0517
#> 29  scsci books         3         5   1.7712   1.6542  0.8331  0.1405 0.0563
#> 30  scsci books         4         5   1.6515   1.6542  0.8189 -0.0033 0.0620
#>         d_t   d_df    d_p  d_fmi d_VarMI d_VarRep
#> 1   -5.1124  24.48 0.0000 0.4043  0.0025   0.0044
#> 2   -9.2220  22.31 0.0000 0.4235  0.0036   0.0058
#> 3  -11.7108  53.95 0.0000 0.2723  0.0024   0.0077
#> 4  -10.2246  55.71 0.0000 0.2680  0.0030   0.0097
#> 5   -8.9169 424.49 0.0000 0.0971  0.0002   0.0027
#> 6  -11.6320 168.14 0.0000 0.1542  0.0006   0.0036
#> 7   -9.6437 634.38 0.0000 0.0794  0.0004   0.0055
#> 8   -4.8112 141.20 0.0000 0.1683  0.0005   0.0028
#> 9   -4.5455    Inf 0.0000 0.0461  0.0001   0.0033
#> 10   0.0694    Inf 0.9447 0.0363  0.0001   0.0043
#> 11  -5.1361  22.78 0.0000 0.4190  0.0031   0.0051
#> 12 -11.6292 110.22 0.0000 0.1905  0.0012   0.0061
#> 13 -11.5999  49.89 0.0000 0.2832  0.0028   0.0086
#> 14 -11.8402 303.11 0.0000 0.1149  0.0012   0.0112
#> 15  -9.2531  90.19 0.0000 0.2106  0.0006   0.0027
#> 16 -12.3568    Inf 0.0000 0.0458  0.0002   0.0041
#> 17  -9.5183  49.51 0.0000 0.2842  0.0020   0.0060
#> 18  -4.7233  50.06 0.0000 0.2827  0.0008   0.0025
#> 19  -5.0018  61.59 0.0000 0.2548  0.0010   0.0034
#> 20  -0.8066  28.12 0.4267 0.3771  0.0018   0.0036
#> 21   3.8163    Inf 0.0001 0.0134  0.0000   0.0039
#> 22   6.0471    Inf 0.0000 0.0486  0.0002   0.0038
#> 23   6.6358 758.33 0.0000 0.0726  0.0004   0.0057
#> 24   7.4094 962.53 0.0000 0.0645  0.0002   0.0043
#> 25   3.0497    Inf 0.0023 0.0483  0.0001   0.0021
#> 26   5.1677 907.26 0.0000 0.0664  0.0002   0.0028
#> 27   4.6313 666.69 0.0000 0.0775  0.0002   0.0032
#> 28   2.8922 351.10 0.0041 0.1067  0.0002   0.0024
#> 29   2.4963    Inf 0.0126 0.0199  0.0001   0.0031
#> 30  -0.0537 220.77 0.9572 0.1346  0.0004   0.0033

#**** Model 2: One variable splitted by gender
res2 <- BIFIEsurvey::BIFIE.univar( bdat, vars=c("ASMMAT"), group="female" )
#> |*****|
#> |-----|
summary(res2)
#> ------------------------------------------------------------
#> BIFIEsurvey 3.8.0 () 
#> 
#> Function 'BIFIE.univar'
#> 
#> Call:
#> BIFIEsurvey::BIFIE.univar(BIFIEobj = bdat, vars = c("ASMMAT"), 
#>     group = "female")
#> 
#> Date of Analysis: 2026-01-11 08:35:30.734813 
#> Time difference of 0.02295876 secs
#> Computation time: 0.02295876 
#> 
#> Multiply imputed dataset
#> 
#> Number of persons = 4668 
#> Number of imputed datasets = 5 
#> Number of Jackknife zones per dataset = 75 
#> Fay factor = 1 
#> 
#> Univariate Statistics | Means
#>      var groupvar groupval  Nweight Ncases       M  M_SE   M_df     M_t M_p
#> 1 ASMMAT   female        0 40129.77 2388.6 512.851 3.256    Inf 157.526   0
#> 2 ASMMAT   female        1 38203.22 2279.4 503.542 2.605 454.07 193.306   0
#>   M_fmi M_VarMI M_VarRep
#> 1 0.028   0.247   10.303
#> 2 0.094   0.531    6.149
#> 
#> Univariate Statistics | Standard Deviations
#>      var groupvar groupval  Nweight Ncases     SD SD_SE  SD_df    SD_t SD_p
#> 1 ASMMAT   female        0 40129.77 2388.6 63.484 1.379  78.52 372.009    0
#> 2 ASMMAT   female        1 38203.22 2279.4 61.496 1.325 102.78 380.057    0
#>   SD_fmi SD_VarMI SD_VarRep
#> 1  0.226    0.357     1.472
#> 2  0.197    0.289     1.409
# analysis of variance
tres2 <- BIFIEsurvey::BIFIE.univar.test(res2)
#> |-----|
summary(tres2)
#> ------------------------------------------------------------
#> BIFIEsurvey 3.8.0 () 
#> 
#> Function 'BIFIE.univar.test'
#> 
#> Call:
#> BIFIEsurvey::BIFIE.univar.test(BIFIE.method = res2)
#> 
#> Date of Analysis: 2026-01-11 08:35:30.763999 
#> Time difference of 0.001686335 secs
#> Computation time: 0.001686335 
#> 
#> Multiply imputed dataset
#> 
#> Number of persons = 4668 
#> Number of imputed datasets = 5 
#> Number of Jackknife zones per dataset = 75 
#> Fay factor = 1 
#> 
#> F Test (ANOVA) 
#>   variable  group     D1    D2 df1 D1_df2 D2_df2   D1_p  D2_p
#> 1   ASMMAT female 12.048 11.37   1      4  105.3 0.0256 0.001
#> 
#> Eta Squared 
#>      var  group   eta2    eta eta_SE    fmi  df VarMI VarRep
#> 1 ASMMAT female 0.0055 0.0742 0.0207 0.0628 Inf     0 0.0004
#> 
#> Cohen's d Statistic 
#>      var  group groupval1 groupval2       M1       M2      SD      d   d_SE
#> 1 ASMMAT female         0         1 512.8511 503.5417 62.4978 0.1489 0.0417
#>      d_t d_df    d_p d_fmi d_VarMI d_VarRep
#> 1 3.5694  Inf 0.0004 0.063  0.0001   0.0016

if (FALSE) { # \dontrun{
#**** Model 3: Univariate statistic: math
res3 <- BIFIEsurvey::BIFIE.univar( bdat, vars=c("ASMMAT") )
summary(res3)
tres3 <- BIFIEsurvey::BIFIE.univar.test(res3)

#############################################################################
# EXAMPLE 2: Imputed TIMSS dataset - Two grouping variables
#############################################################################

data(data.timss1)
data(data.timssrep)

# create BIFIE.dat object
bdat <- BIFIEsurvey::BIFIE.data( data.list=data.timss1, wgt=data.timss1[[1]]$TOTWGT,
                  wgtrep=data.timssrep[, -1 ] )

#**** Model 1: 3 variables splitted by book and female
res1 <- BIFIEsurvey::BIFIE.univar(bdat, vars=c("ASMMAT", "ASSSCI","scsci"),
                  group=c("books","female"))
summary(res1)

# analysis of variance
tres1 <- BIFIEsurvey::BIFIE.univar.test(res1)
summary(tres1)

# extract data frame with Cohens d statistic
dstat <- tres1$stat.dstat

# extract d values for gender comparisons with same value of books
# -> 'books' refers to the first variable
ind <- which(
  unlist( lapply( strsplit( dstat$groupval1, "#"), FUN=function(vv){vv[1]}) )==
  unlist( lapply( strsplit( dstat$groupval2, "#"), FUN=function(vv){vv[1]}) )
        )
dstat[ ind, ]
} # }