Skip to contents

This function performs a Wald test for objects of classes BIFIE.by, BIFIE.correl, BIFIE.crosstab, BIFIE.freq, BIFIE.linreg, BIFIE.logistreg and BIFIE.univar.

Usage

BIFIE.waldtest(BIFIE.method, Cdes, rdes, type=NULL)

# S3 method for class 'BIFIE.waldtest'
summary(object,digits=4,...)

Arguments

BIFIE.method

Object of classes BIFIE.by, BIFIE.correl, BIFIE.crosstab, BIFIE.freq, BIFIE.linreg, BIFIE.logistreg or BIFIE.univar (see parnames in the Output of these methods for saved parameters)

Cdes

Design matrix \(C\) (see Details)

rdes

Design vector \(r\) (see Details)

type

Only applies to BIFIE.correl. In case of type="cov" covariances instead of correlations are used for parameter tests.

object

Object of class BIFIE.waldtest

digits

Number of digits for rounding output

...

Further arguments to be passed

Details

The Wald test is conducted for a parameter vector \(\bold{\theta}\), specifying the hypothesis \(C \bold{\theta}=r\). Statistical inference is performed by using the \(D_1\) and the \(D_2\) statistic (Enders, 2010, Ch. 8).

For objects of class bifie.univar, only hypotheses with respect to means are implemented.

Value

A list with following entries

stat.D

Data frame with \(D_1\) and \(D_2\) statistic, degrees of freedom and p value

...

More values

References

Enders, C. K. (2010). Applied missing data analysis. Guilford Press.

See also

Examples

#############################################################################
# EXAMPLE 1: Imputed TIMSS dataset
#############################################################################

data(data.timss1)
data(data.timssrep)

# create BIFIE.dat object
bdat <- BIFIEsurvey::BIFIE.data( data.list=data.timss1, wgt=data.timss1[[1]]$TOTWGT,
           wgtrep=data.timssrep[, -1 ] )
#> +++ Generate BIFIE.data object
#> |*****|
#> |-----|

#******************
#*** Model 1: Linear regression
res1 <- BIFIEsurvey::BIFIE.linreg( bdat, dep="ASMMAT", pre=c("one","books","migrant"),
         group="female" )
#> |*****|
#> |-----|
summary(res1)
#> ------------------------------------------------------------
#> BIFIEsurvey 3.8.0 () 
#> 
#> Function 'BIFIE.linreg'
#> 
#> Call:
#> BIFIEsurvey::BIFIE.linreg(BIFIEobj = bdat, dep = "ASMMAT", pre = c("one", 
#>     "books", "migrant"), group = "female")
#> 
#> Date of Analysis: 2026-01-11 08:35:31.120845 
#> Time difference of 0.1286471 secs
#> Computation time: 0.1286471 
#> 
#> Multiply imputed dataset
#> 
#> Number of persons = 4668 
#> Number of imputed datasets = 5 
#> Number of Jackknife zones per dataset = 75 
#> Fay factor = 1 
#> 
#> Statistical Inference for Linear Regression 
#> 
#>    parameter     var groupvar groupval Ncases  Nweight      est     SE     t
#> 1          b     one   female        0 2388.6 40129.77 475.7590 5.9980 79.32
#> 2          b   books   female        0 2388.6 40129.77  14.7772 1.5953  9.26
#> 3          b migrant   female        0 2388.6 40129.77 -27.5197 4.8707 -5.65
#> 4      sigma      NA   female        0 2388.6 40129.77  59.1117 1.3971 42.31
#> 5        R^2      NA   female        0 2388.6 40129.77   0.1330 0.0225  5.91
#> 6       beta     one   female        0 2388.6 40129.77   0.0000 0.0000   NaN
#> 7       beta   books   female        0 2388.6 40129.77   0.2795 0.0293  9.55
#> 8       beta migrant   female        0 2388.6 40129.77  -0.1716 0.0289 -5.94
#> 9          b     one   female        1 2279.4 38203.22 450.2843 5.7458 78.37
#> 10         b   books   female        1 2279.4 38203.22  19.0498 1.5168 12.56
#> 11         b migrant   female        1 2279.4 38203.22 -19.6951 4.8840 -4.03
#> 12     sigma      NA   female        1 2279.4 38203.22  56.6789 1.2510 45.31
#> 13       R^2      NA   female        1 2279.4 38203.22   0.1506 0.0184  8.18
#> 14      beta     one   female        1 2279.4 38203.22   0.0000 0.0000   NaN
#> 15      beta   books   female        1 2279.4 38203.22   0.3355 0.0249 13.49
#> 16      beta migrant   female        1 2279.4 38203.22  -0.1286 0.0316 -4.07
#>        df      p    fmi  VarMI  VarRep
#> 1  966.02 0.0000 0.0643 1.9292 33.6612
#> 2  244.24 0.0000 0.1280 0.2714  2.2193
#> 3   23.80 0.0000 0.4100 8.1050 13.9980
#> 4  121.92 0.0000 0.1811 0.2946  1.5984
#> 5   55.45 0.0000 0.2686 0.0001  0.0004
#> 6      NA     NA 0.0000 0.0000  0.0000
#> 7  187.64 0.0000 0.1460 0.0001  0.0007
#> 8   24.66 0.0000 0.4028 0.0003  0.0005
#> 9  289.24 0.0000 0.1176 3.2354 29.1319
#> 10 211.92 0.0000 0.1374 0.2634  1.9847
#> 11 118.57 0.0001 0.1837 3.6509 19.4721
#> 12  56.52 0.0000 0.2660 0.3469  1.1486
#> 13 752.75 0.0000 0.0729 0.0000  0.0003
#> 14     NA     NA 0.0000 0.0000  0.0000
#> 15 163.92 0.0000 0.1562 0.0001  0.0005
#> 16 115.40 0.0001 0.1862 0.0002  0.0008

#*** Wald test which tests whether sigma and R^2 values are the same
res1$parnames    # parameter names
#>  [1] "b_one_female_0"        "b_books_female_0"      "b_migrant_female_0"   
#>  [4] "sigma_NA_female_0"     "R^2_NA_female_0"       "beta_one_female_0"    
#>  [7] "beta_books_female_0"   "beta_migrant_female_0" "b_one_female_1"       
#> [10] "b_books_female_1"      "b_migrant_female_1"    "sigma_NA_female_1"    
#> [13] "R^2_NA_female_1"       "beta_one_female_1"     "beta_books_female_1"  
#> [16] "beta_migrant_female_1"
pn <- res1$parnames ; PN <- length(pn)
Cdes <- matrix(0,nrow=2, ncol=PN)
colnames(Cdes) <- pn
# equality of R^2  ( R^2(female0) - R^2(female1)=0 )
Cdes[ 1, c("R^2_NA_female_0", "R^2_NA_female_1" ) ] <- c(1,-1)
# equality of sigma ( sigma(female0) - sigma(female1)=0)
Cdes[ 2, c("sigma_NA_female_0", "sigma_NA_female_1" ) ] <- c(1,-1)
# design vector
rdes <- rep(0,2)
# perform Wald test
wmod1 <- BIFIEsurvey::BIFIE.waldtest( BIFIE.method=res1, Cdes=Cdes, rdes=rdes )
summary(wmod1)
#> ------------------------------------------------------------
#> BIFIEsurvey 3.8.0 () 
#> 
#> Function 'BIFIE.waldtest' for BIFIE method 'BIFIE.linreg'
#> 
#> Call:
#> BIFIEsurvey::BIFIE.waldtest(BIFIE.method = res1, Cdes = Cdes, 
#>     rdes = rdes)
#> 
#> Date of Analysis: 2026-01-11 08:35:31.25777 
#> 
#> Multiply imputed dataset
#> 
#> Number of persons = 4668 
#> Number of imputed datasets = 5 
#> Number of Jackknife zones per dataset = 75 
#> Fay factor = 1 
#> 
#> D1 and D2 Statistic for Wald Test 
#> 
#>       D1     D2 df1 D1_df2 D2_df2   D1_p   D2_p
#> 1 0.7432 0.8079   2   13.4   60.5 0.4942 0.4505

if (FALSE) { # \dontrun{
#******************
#*** Model 2: Correlations

# compute some correlations
res2a <- BIFIEsurvey::BIFIE.correl( bdat, vars=c("ASMMAT","ASSSCI","migrant","books"))
summary(res2a)

# test whether r(MAT,migr)=r(SCI,migr) and r(MAT,books)=r(SCI,books)
pn <- res2a$parnames; PN <- length(pn)
Cdes <- matrix( 0, nrow=2, ncol=PN )
colnames(Cdes) <- pn
Cdes[ 1, c("ASMMAT_migrant", "ASSSCI_migrant") ] <- c(1,-1)
Cdes[ 2, c("ASMMAT_books", "ASSSCI_books") ] <- c(1,-1)
rdes <- rep(0,2)
# perform Wald test
wres2a <- BIFIEsurvey::BIFIE.waldtest( res2a, Cdes, rdes )
summary(wres2a)

#******************
#*** Model 3: Frequencies

# Number of books splitted by gender
res3a <- BIFIEsurvey::BIFIE.freq( bdat, vars=c("books"), group="female" )
summary(res3a)

# test whether book(cat4,female0)+book(cat5,female0)=book(cat4,female1)+book(cat5,female5)
pn <- res3a$parnames
PN <- length(pn)
Cdes <- matrix( 0, nrow=1, ncol=PN )
colnames(Cdes) <- pn
Cdes[ 1, c("books_4_female_0", "books_5_female_0",
    "books_4_female_1", "books_5_female_1" ) ] <- c(1,1,-1,-1)
rdes <- c(0)
# Wald test
wres3a <- BIFIEsurvey::BIFIE.waldtest( res3a, Cdes, rdes )
summary(wres3a)

#******************
#*** Model 4: Means

# math and science score splitted by gender
res4a <- BIFIEsurvey::BIFIE.univar( bdat, vars=c("ASMMAT","ASSSCI"), group="female")
summary(res4a)

# test whether there are significant gender differences in math and science
#=> multivariate ANOVA
pn <- res4a$parnames
PN <- length(pn)
Cdes <- matrix( 0, nrow=2, ncol=PN )
colnames(Cdes) <- pn
Cdes[ 1, c("ASMMAT_female_0", "ASMMAT_female_1"  ) ] <- c(1,-1)
Cdes[ 2, c("ASSSCI_female_0", "ASSSCI_female_1"  ) ] <- c(1,-1)
rdes <- rep(0,2)
# Wald test
wres4a <- BIFIEsurvey::BIFIE.waldtest( res4a, Cdes, rdes )
summary(wres4a)
} # }