Statistical Inference for Derived Parameters
BIFIE.derivedParameters.RdThis function performs statistical for derived parameters for objects of classes
BIFIE.by,
BIFIE.correl, BIFIE.crosstab, BIFIE.freq,
BIFIE.linreg, BIFIE.logistreg and BIFIE.univar.
Arguments
- BIFIE.method
Object of classes
BIFIE.by,BIFIE.correl,BIFIE.crosstab,BIFIE.freq,BIFIE.linreg,BIFIE.logistregorBIFIE.univar(seeparnamesin the Output of these methods for saved parameters)- derived.parameters
List with R formulas for derived parameters (see Examples for specification)
- type
Only applies to
BIFIE.correl. In case oftype="cov"covariances instead of correlations are used for derived parameters.- object
Object of class
BIFIE.derivedParameters- digits
Number of digits for rounding decimals in output
- ...
Further arguments to be passed
Details
The distribution of derived parameters is derived by the direct calculation using original resampled parameters.
Value
A list with following entries
- stat
Data frame with statistics
- coef
Estimates of derived parameters
- vcov
Covariance matrix of derived parameters
- parnames
Parameter names
- res_wald
Output of Wald test (global test regarding all parameters)
- ...
More values
See also
See also BIFIE.waldtest for multi-parameter tests.
See car::deltaMethod for the Delta method assuming that the multivariate
distribution of the parameters is
asymptotically normal.
Examples
#############################################################################
# EXAMPLE 1: Imputed TIMSS dataset
# Inference for correlations and derived parameters
#############################################################################
data(data.timss1)
data(data.timssrep)
# create BIFIE.dat object
bdat <- BIFIEsurvey::BIFIE.data( data.list=data.timss1, wgt=data.timss1[[1]]$TOTWGT,
wgtrep=data.timssrep[, -1 ] )
#> +++ Generate BIFIE.data object
#> |*****|
#> |-----|
# compute correlations
res1 <- BIFIEsurvey::BIFIE.correl( bdat,
vars=c("ASSSCI", "ASMMAT", "books", "migrant" ) )
#> |*****|
#> |-----|
summary(res1)
#> ------------------------------------------------------------
#> BIFIEsurvey 3.8.0 ()
#>
#> Function 'BIFIE.correl'
#>
#> Call:
#> BIFIEsurvey::BIFIE.correl(BIFIEobj = bdat, vars = c("ASSSCI",
#> "ASMMAT", "books", "migrant"))
#>
#> Date of Analysis: 2026-01-11 08:35:24.702476
#> Time difference of 0.2890172 secs
#> Computation time: 0.2890172
#>
#> Multiply imputed dataset
#>
#> Number of persons = 4668
#> Number of imputed datasets = 5
#> Number of Jackknife zones per dataset = 75
#> Fay factor = 1
#>
#> Statistical Inference for Correlations
#> var1 var2 Ncases Nweight cor cor_SE t df p cor_fmi
#> 2 ASSSCI ASMMAT 4668 78332.99 0.8292 0.0090 92.62 13.43 0 0.5457
#> 3 ASSSCI books 4668 78332.99 0.3739 0.0217 17.22 962.93 0 0.0645
#> 4 ASSSCI migrant 4668 78332.99 -0.3402 0.0217 -15.65 354.02 0 0.1063
#> 6 ASMMAT books 4668 78332.99 0.3379 0.0214 15.78 270.79 0 0.1215
#> 7 ASMMAT migrant 4668 78332.99 -0.2287 0.0237 -9.64 359.64 0 0.1055
#> 9 books migrant 4668 78332.99 -0.2537 0.0209 -12.13 Inf 0 0.0445
#> cor_VarMI cor_VarRep
#> 2 0 0.0000
#> 3 0 0.0004
#> 4 0 0.0004
#> 6 0 0.0004
#> 7 0 0.0005
#> 9 0 0.0004
#>
#> Correlation Matrices
#>
#> $one1
#> ASSSCI ASMMAT books migrant
#> ASSSCI 1.0000 0.8292 0.3739 -0.3402
#> ASMMAT 0.8292 1.0000 0.3379 -0.2287
#> books 0.3739 0.3379 1.0000 -0.2537
#> migrant -0.3402 -0.2287 -0.2537 1.0000
#>
res1$parnames
#> [1] "ASSSCI_ASSSCI" "ASSSCI_ASMMAT" "ASSSCI_books" "ASSSCI_migrant"
#> [5] "ASMMAT_ASMMAT" "ASMMAT_books" "ASMMAT_migrant" "books_books"
#> [9] "books_migrant" "migrant_migrant"
## [1] "ASSSCI_ASSSCI" "ASSSCI_ASMMAT" "ASSSCI_books" "ASSSCI_migrant"
## [5] "ASMMAT_ASMMAT" "ASMMAT_books" "ASMMAT_migrant" "books_books"
## [9] "books_migrant" "migrant_migrant"
# define four derived parameters
derived.parameters <- list(
# squared correlation of science and mathematics
"R2_sci_mat"=~ I( 100* ASSSCI_ASMMAT^2 ),
# partial correlation of science and mathematics controlling for books
"parcorr_sci_mat"=~ I( ( ASSSCI_ASMMAT - ASSSCI_books * ASMMAT_books ) /
sqrt(( 1 - ASSSCI_books^2 ) * ( 1-ASMMAT_books^2 ) ) ),
# original correlation science and mathematics (already contained in res1)
"cor_sci_mat"=~ I(ASSSCI_ASMMAT),
# original correlation books and migrant
"cor_book_migra"=~ I(books_migrant)
)
# statistical inference for derived parameters
res2 <- BIFIEsurvey::BIFIE.derivedParameters( res1, derived.parameters )
summary(res2)
#> ------------------------------------------------------------
#> BIFIEsurvey 3.8.0 ()
#>
#> Function 'BIFIE.derivedParameters'
#>
#> Call:
#> BIFIEsurvey::BIFIE.derivedParameters(BIFIE.method = res1, derived.parameters = derived.parameters)
#>
#> Date of Analysis: 2026-01-11 08:35:24.997193
#> Time difference of 0.07594967 secs
#> Computation time: 0.07594967
#>
#> Multiply imputed dataset
#>
#> Number of persons = 4668
#> Number of imputed datasets = 5
#> Number of Jackknife zones per dataset = 75
#> Fay factor = 1
#>
#> Formulas for Derived Parameters
#>
#> R2_sci_mat := I(100 * ASSSCI_ASMMAT^2)
#> parcorr_sci_mat := I((ASSSCI_ASMMAT - ASSSCI_books * ASMMAT_books)/sqrt((1 - ASSSCI_books^2) * (1 - ASMMAT_books^2)))
#> cor_sci_mat := I(ASSSCI_ASMMAT)
#> cor_book_migra := I(books_migrant)
#>
#> Statistical Inference for Derived Parameters
#>
#> parmlabel coef se t df p fmi VarMI VarRep
#> 1 R2_sci_mat 68.7673 1.4845 46.3232 13.45 0 0.5453 1.0014 1.0021
#> 2 parcorr_sci_mat 0.8053 0.0092 87.8583 14.40 0 0.5270 0.0000 0.0000
#> 3 cor_sci_mat 0.8292 0.0090 92.6156 13.43 0 0.5457 0.0000 0.0000
#> 4 cor_book_migra -0.2537 0.0209 -12.1266 Inf 0 0.0445 0.0000 0.0004
#>
#> D1 and D2 Statistic for Wald Test
#>
#> D1 D2 df1 D1_df2 D2_df2 D1_p D2_p
#> 1 22085063 9.7456 4 38.5 1.7 0 0.1179